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Abstract. By classical results of Rochlin, Thom, Wallace and Lickorish, it
is well-known that any two 3-manifolds (with diffeomorphic boundaries) are

related one to the other by surgery operations. Yet, by restricting the type of

the surgeries, one can define several families of non-trivial equivalence relations
on the sets of (diffeomorphism classes of) 3-manifolds. In this expository paper,

which is based on lectures given at the school “Winter Braids XI ” (Dijon,
December 2021), we explain how certain filtrations of mapping class groups of

surfaces enter into the definitions and the mutual comparison of these surgery

equivalence relations. We also survey the ways in which concrete invariants of
3-manifolds (such as finite-type invariants) can be used to characterize such

relations.
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Introduction

It is a classical result of Rochlin and Thom, dating back to the early 50’s, that any
closed oriented 3-manifold M is the boundary of a compact oriented 4-manifold W .
By elementary differential topology arguments (considering a handle decomposition
of W ), it follows that M is obtained from the 3-sphere S3 by finitely many knot
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surgeries. Here a “knot surgery” in a 3-manifold V merely consists in removing a
regular neighborhood N(K) of a knot K in V and gluing it back while exchanging
the meridian with a parallel curve of K on ∂N(K).

Here is another (equivalent) way of viewing any closed oriented 3-manifold M
as the result of “modifying” S3 in some way. Consider a Heegaard splitting of M ,
i.e. the decomposition of M = H ∪ H ′ into two handlebodies H,H ′ of the same
genus g such that H ∩ H ′ = ∂H = ∂H ′: the existence of such a decomposition
arises again from elementary differential topology (considering, this time, a handle
decomposition of M itself). Since there also exists a Heegaard splitting of S3 of
genus g, and since any two handlebodies of genus g are diffeomorphic, one can find
a compact oriented surface T in S3 and a self-diffeomorphism t of T such that M
is obtained from the 3-sphere S3 by cutting along T and gluing back with t. We
call this operation a twist along T by t.

Since “knot surgeries” and “twists” (as defined above) are thus too general to
define interesting relations between 3-manifolds, it is natural to impose some con-
ditions on these operations. For instance, if one desires a twist to preserve the
homology type of 3-manifolds, we should require the gluing diffeomorphism to act
trivially in homology; similarly, one can ensure that a knot surgery preserves the
homology type by requiring the knot to be null-homologous and by choosing the
parallel in a convenient way. Stronger conditions on knot surgeries or twists can
guarantee preservation of stricter features of the 3-manifolds: for instance, their
“nilpotent homotopy types”, or, their invariance under certain families of topolog-
ical invariants. It turns out that, in the past 40 years, several families of highly
non-trivial equivalence relations have been defined for 3-manifolds by restricting
the type of the “knot surgeries” or “twists.”

In this expository paper, we aim at surveying the study of such surgery equiv-
alence relations which, for some of them, have been introduced several times in
the literature with different descriptions. More specifically, via the above notion of
“twists”, we shall review how certain filtrations of mapping class groups of surfaces
enter into the definitions and the mutual comparison of these equivalence relations.
Furthermore, we will survey the ways in which concrete invariants of 3-manifolds
(such as finite-type invariants) can be used to characterize such relations.

This expository paper is based on lectures given at the school “Winter Braids
XI ”, which was held at the IMB (Dijon) in December 2021. So, in §1, we start
with preliminary contents for readers who might not be so familiar with certain
constructions of differential topology (e.g. handle decompositions) or basic results
of low-dimensional topology (including the generation of the mapping class groups
in relation with the above-mentioned theorem of Rochlin [90] and Thom [98]). Next,
in §2, we review the definitions of three families of surgery equivalence relations: the
k-equivalence relations defined by Cochran, Gerges & Orr [11], the Yk-equivalence
relations defined under different names by Goussarov [27] and Habiro [30], and
the Jk-equivalence relations which arise naturally from the study of the latter. It
follows from their definitions that all these relations are “hierarchized” as follows:

Y1-eq. ⇐= Y2-eq. ⇐= Y3-eq. ⇐= · · · Yk-eq. ⇐= Yk+1-eq. ⇐= · · ·
‖ ⇓ ⇓ ⇓ ⇓

J1-eq. ⇐= J2-eq. ⇐= J3-eq. ⇐= · · · Jk-eq. ⇐= Jk+1-eq. ⇐= · · ·
‖

2-eq. ⇐= 3-eq. ⇐= · · · k-eq. ⇐= (k + 1)-eq. ⇐= · · ·
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For instance, Y1-equivalence (resp. 2-equivalence) is generated by the twists (resp.
the knot surgeries) of the above-mentioned kinds that preserve the homology type of
3-manifolds. We give particular emphasis on the Yk-equivalence relations: indeed,
their definition and their study are closely tied to those of the lower central series
of the subgroup of the mapping class group acting trivially in homology, namely
the Torelli group of a surface. The main advantage of the Yk-equivalence, with
respect to the Jk-equivalence and the k-equivalence, consists in the existence of a
kind of “surgery calculus” — known as clasper calculus — which is very efficient
to describe the associated quotient sets of 3-manifolds.

The final section, §3, is devoted to the problem of characterizing all these equiv-
alence relations. We start by reviewing a result of Matveev [68] which classifies
Y1-equivalence for closed 3-manifolds, and we extract from the literature several
results for the characterization of the other equivalence relations in low degree k.
We also consider the problem of characterizing them in arbitrary degree k: in the
case of the Yk-equivalence relations, such a problem is connected to the theory of
finite-type invariants which we briefly outline. In fact, the exact connection be-
tween this theory and the family of Yk-equivalence relations can be viewed as an
instance of the so-called “Dimension Subgroup Problem” in group theory.

Our exposition will be mainly directed towards closed oriented 3-manifolds and
homology cylinders over a compact oriented surface Σ. The latter constitute a par-
ticular, but very important, class of compact oriented 3-manifolds with boundary
parametrized by ∂(Σ × [−1,+1]): in fact, homology cylinders even constitute a
monoid into which the Torelli group of Σ naturally embeds via the mapping cylin-
der construction, and which is essentially the monoid of Z-homology 3-spheres in
the case Σ := D2. Since the works of Goussarov [27], Habiro [30] and Garoufalidis
& Levine [26], most of the study on surgery equivalence relations for 3-manifolds
have been focused on monoids of homology cylinders in relation with the theory of
finite-type invariants and the algebraic structure of mapping class groups.

The case of 3-manifolds with arbitrary boundary is not so much developed in
the literature, although we should mention the notable exception of knots and
(string-)links exteriors. In the study of knots and (string-)links, the Yk-equivalence
relations are replaced by the more specific “Ck-equivalence relations” (which can be
formulated in purely knot-diagrammatic terms), and the role played by the lower
central series of the Torelli group for 3-manifolds is played by the lower central
series of the pure braid group (which is much better understood): then, the study
in this case turns out to be rather particular, but it also shares many similarities
and connections with the general case. This study started in relation with the
theory of Vassiliev invariants through the works of Stanford [95] and Habiro [30],
before being developed and generalized in several directions (see [69] and references
therein). Yet, for a better delimitation of the problematics, the present survey will
not consider the specific case of knots and (string-)links.

Acknowledgment. This work has been partly funded by the project “ITIQ-3D” of
the Région Bourgogne Franche–Comté and the project “AlMaRe” (ANR-19-CE40-
0001-01). The IMB receives support from the EIPHI Graduate School (ANR-17-
EURE-0002). The author is grateful to the referee for the careful reading of the
manuscript.
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1. Basics about 3-manifolds and mapping class groups

We start this expository paper by reviewing basic facts and constructions for
3-manifolds and mapping class groups of surfaces.

Conventions. All manifolds are assumed to be smooth and, unless otherwise
stated, they are connected and oriented. For any integer n ≥ 0, Dn ⊂ Rn is the
n-dimensional euclidean disk and Sn := ∂Dn+1 is the n-dimensional sphere. �

1.1. Surgeries and handle decompositions. We first recall the general defi-
nitions of surgeries and handle decompositions in any dimension m ≥ 1, before
illustrating these constructions by specializing to the dimension m = 3.

Let M be a (possibly disconnected) m-manifold, let k ∈ {1, 2, . . . ,m} and let
i : Sk−1 ×Dm+1−k ↪→ int(M) be an embedding. The m-manifold

M ′ :=
(
M \ int i(Sk−1 ×Dm+1−k)

)
∪i′
(
Dk × Sm−k

)
where i′ := i|Sk−1×Sm−k

is said to be obtained from M by the surgery of index k along i. Observe that,
reversely, M is obtained from M ′ by a surgery of index (m+ 1− k).

Example 1.1. In dimension m := 3, we get the following operations M  M ′:

(1) Index k = 1: we consider the disjoint union S0×D3 of two balls in M and
replace it by D1 × S2; thus the two balls are deleted and their boundaries
are identified one to the other in an orientation-preserving way.

(2) Index k = 2: we consider a solid torus S1 × D2 in M and replace it by
another one D2×S1; “meridians” and “parallels” of solid tori are exchanged
during this process.

(3) Index k = 3: we consider a thickened sphere S2×D1 in M and we fill each
of the two spheres S2 × S0 with a ball.

Thus, a surgery of index 1 can be of two types in dimension 3: if the two balls
S0 ×D3 belong to the same connected component of M , then M ′ ∼= M](S1 × S2)
which can also be obtained by surgery of index 2 along a solid torus S1 ×D2 ⊂M
such that S1×{0} bounds a disk; otherwise, M ′ is obtained from M by taking the
connected sum of two of its connected components.

Similarly, a surgery of index 3 can be of two types: if the thickened sphere S2×D1

is separating, then M is reversely obtained from M ′ by taking the connected sum
of two of its connected components; otherwise, we have M ∼= M ′](S1 × S2).

We conclude that, in dimension 3, it is enough to consider surgeries of index 2.
For later use, we reformulate them in knot-theoretical terms. Let K ⊂ int(M) be a
knot; a parallel of K is a simple closed curve in the boundary ∂N(K) of the regular
neighborhood N(K) of K, that is isotopic to K inside N(K); the meridian of K
is the simple closed curve µ(K) in ∂N(K) that bounds a disk in N(K) but not in
∂N(K); up to isotopy in ∂N(K), the meridian is unique but there are infinitely
many possibilities for a parallel. See Figure 1.

We now assume that K is framed in the sense that a parallel ρ(K) has been
specified; then the 3-manifold obtained from M by surgery along K is

MK :=
(
M \ int N(K)

)
∪φ (D2 × S1)

where φ : S1 × S1 → ∂N(K) is a diffeomorphism mapping {1} × S1 to µ(K) and
S1×{1} to ρ(K). The manifoldMK is well-defined only up to orientation-preserving
diffeomorphisms, and the surgery M  MK is the same as a surgery M  M ′ of
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Figure 1. A knot K (black) in its regular neighborhood N(K),
together with the meridian (red) and a parallel (blue)

index 2, where the embedding i : S1 × D2 ↪→ int(M) has image N(K) and maps
S1 × {0} (resp. S1 × {1}) to K (resp. to ρ(K)).

Very often, a framed knot K in a 3-manifold M is given by drawing on the
blackboard a knot diagram, which represents the image of a generic projection of
the knot on a planar surface B ⊂M onto which (part of) M deformation retracts:
we keep track of the “over/under” crossing information at each double point and
the parallel of K is given by lifting the curve parallel to the projection of K in B.
This is called the “blackboard framing convention”. For instance, here are three
diagrams of the trivial knot U ⊂ S3 showing three different framings:

then the resulting manifold S3
U is S1×S2, S3 and RP 3, respectively. (To be specific,

the knots are given in R3 ⊂ S3 and the planar surface B onto which we project is
an affine plane of R3.) �

A surgery of index k is only the tip of the iceberg of a higher-dimensional op-
eration. Let n ∈ N and k ∈ {0, . . . , n}. A k-handle in dimension n is a copy of
Dk ×Dn−k; its boundary can be decomposed into two parts:

∂(Dk ×Dn−k) =
(
Sk−1 ×Dn−k) ∪ (Dk × Sn−k−1

)
Let W be an n-manifold with boundary. Attaching a k-handle to W means to
specify an embedding i : Sk−1 ×Dn−k ↪→ ∂W to construct the new n-manifold

W ′ = W ∪i
(
Dk ×Dn−k).

Then ∂W ′ is obtained from ∂W by a surgery of index k.

Remark 1.2. Technically speaking, the new manifold W ′ has “corners” but there
exists a standard procedure to round those “corners”. Alternatively, one can give
a smooth model of the attachment of a k-handle that arises from Morse theory
(see below). For instance, here are schematic images (with or without corners) of
a 1-handle attached in dimension 2:
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corners

vs

�

Two closed m-manifolds M and M ′ are cobordant if there exists a compact
(m+ 1)-manifold W such that ∂W ∼= (−M) tM ′. Then, W is called a cobordism
from M to M ′. Of course, any compact n-manifold W with boundary can be viewed
as a cobordism from ∅ to ∂W and, in particular, any closed n-manifold W can be
viewed as a cobordism from ∅ to ∅.

Definition 1.3. The m-th cobordism group is the quotient set

Ωm :=
{closed m-manifolds}

cobordism

equipped with the disjoint union t operation. �

Thom [100] studied those abelian groups for all integers m ≥ 1: he described
them as kinds of stable homotopy groups, he showed that they constitute the co-
efficient modules of a generalized homology theory, he computed Ωm up to degree
m = 7 and gave, among other things, an explicit computation of the ring Ω∗ ⊗ Q
. . . For this pioneering work, Thom received the Fields Medal in 1958.

Example 1.4. As soon as one knows the classification of closed k-manifolds for
k ∈ {0, 1, 2}, it is pretty clear that

Ω0 ' Z, and Ω1 = Ω2 = {0}.

However, it is much less obvious that Ω3 = {0} as well: we shall prove it in §1.3. �

Let W be an n-dimensional cobordism from M to M ′. A handle decomposition
of W is an increasing sequence

W−1 ⊂W0 ⊂W1 ⊂ · · · ⊂Wn = W

where W−1
∼= M × [−1 − ε,−1 + ε] and Wi is obtained from Wi−1 by attaching

finitely many i-handles. Note that −W is a cobordism from M ′ to M and has a
dual handle decomposition, consisting of one handle of index n− i for every handle
of index i in W .

Fact. Morse theory tells us that any cobordism W has a handle decomposition.
Specifically, any Morse function f : W → [−1− ε, n+ ε] such that

� for each i ∈ {0, 1, . . . , n}, all critical points of f of index i are in f−1(i),
� (−1− ε) and (n+ ε) are regular values of f ,
� f−1(−1− ε) = M and f−1(n+ ε) = M ′,

defines a handle decomposition of W by setting Wi := f−1([−1− ε, i+ ε]). Further-
more, there is one handle of index i for every critical point of f of index i. �
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We recommend Milnor’s textbooks [70, 71] for an introduction to Morse theory.
As a complement to this, Cerf theory can also tell us how any two handle decom-
positions of the same cobordism are related one to the other by some operations
(namely, creation/annihilation of two handles of consecutive indices, and handle
slidings). But we shall not need that in these lectures.

It follows from the above fact that, in particular, any closed n-manifold W has a
handle decomposition W0 ⊂ W1 ⊂ · · · ⊂ Wn = W where W0 consists of 0-handles,
W1 is obtained from W0 by attaching 1-handles, and so on, to finish by gluing
n-handles to get W . As is easily checked, we can assume that

� W0 consists of a single 0-handle D0 ×Dn,
� dually, Wn is obtained from Wn−1 by attaching a single n-handle Dn×D0.

Example 1.5. Let M be a closed 3-manifold. According to what has been recalled
above, M has a handle decomposition

M0 ⊂M1 ⊂M2 ⊂M3 = M

with a single 0-handle and a single 3-handle. Thus, there is an integer g ≥ 0 such
that M1 is diffeomorphic to

Hg :=

1 g
· · ·

which is a called the standard handlebody of genus g, and whose boundary

Σg := ∂Hg

is the standard closed (oriented) surface of genus g. Dually, there is an integer g′

such that M ′1 := M \ int(M1) is diffeomorphic to Hg′ . Since M1 and M ′1 share
the same boundary, we must have Σg = Σg′ : hence g = g′. We conclude that any
closed 3-manifold M can be decomposed as

M ∼= Hg ∪f (−Hg)

where f : Σg → Σg is an orientation-preserving diffeomorphism. Such a decompo-
sition is called a Heegaard splitting of M of genus g. �

In the rest of these notes, we restrict our attention to 3-manifolds.

1.2. Mapping class groups of surfaces. The Heegaard splittings, which have
been described in Example 1.5, reveal that all closed 3-manifolds can be efficiently
presented in terms of diffeomorphisms of surfaces. The following lemma adds that,
being only interested in 3-manifolds up to diffeomorphisms, we only have to consider
diffeomorphisms of surfaces up to isotopy.

Lemma 1.6. Let g ∈ N. The (oriented) diffeomorphism type of Mf := Hg ∪f (−Hg)
only depends on the isotopy class of f .

Proof. For any orientation-preserving diffeomorphisms E : Hg → Hg and f :
Σg → Σg, we clearly have

Mf◦E|Σg
∼= Mf

∼= ME|Σg◦f .
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Assume that f ′ : Σg → Σg is another orientation-preserving diffeomorphism which
is isotopic to f . Then e = f−1 ◦ f ′ is isotopic to the identity, and we can use a
collar neighborhood of Σg in Hg to construct a diffeomorphism E : Hg → Hg such
that E|Σg = e. We conclude that Mf ′ = Mf◦e ∼= Mf . �

Thus we are led to consider the mapping class group of the surface Σg, which is
defined by

(1.1) M(Σg) :=
{orientation-preserving diffeomorphisms Σg → Σg}

isotopy
.

We refer to the textbooks [6, 19] for an exposition of mapping class groups. For the
moment, we just need to review the simplest examples and give explicit generating
systems for those groups.

Example 1.7. The group M(Σ0) is trivial. Besides, through its action on the
abelian group H1(Σ1;Z) ' Z2, the groupM(Σ1) is isomorphic to SL(2;Z). See the
above-mentioned textbooks, or [64, §2] for a direct treatment of these examples. �

Let α be a simple closed curve in Σg. We identify a regular neighborhood N(α)
of α with the annulus S1× [0, 1], in such a way that orientations are preserved. The
Dehn twist along α is the diffeomorphism Tα : Σg → Σg defined by

Tα(x) =

ß
x if x /∈ N(α)(
e2iπ(θ+r), r

)
if x =

(
e2iπθ, r

)
∈ N(α) = S1 × [0, 1].

Because of the choice of N(α) and its “parametrization” by S1 × [0, 1], the diffeo-
morphism Tα is only defined up to isotopy. But the isotopy class [Tα] ∈ M(Σg)
only depends on the isotopy class of the curve α. Here is the effect of Tα on a curve
ρ which crosses transversely α in a single point:

α

ρ

N(α)

Tα−→

Theorem 1.8 (Dehn 1938). In any genus g ≥ 1, the group M(Σg) is generated by
finitely many Dehn twists.

Dehn’s generating system [13] can be written explicitly. It consists of 2 twists
in genus g = 1, and 5 twists in genus g = 2: see Figure 2. In genus g > 2, M(Σg)
is generated by the Dehn twists along the 2g(g − 1) curves shown in Figure 3: the
curves αi (blue, for all i ∈ {1, . . . , g}), βi (red, for all i ∈ {1, . . . , g}), δi (purple, for
all i ∈ {1, . . . , g}), γij (green, for any pair {i, j} of two elements in {1, . . . , 2g} that
are of distance at least three in the cyclic order).

In the sequel, we shall only need the following information about Dehn’s gener-
ating system of M(Σg):

(1.2)
In genus g > 1, the group M(Σg) is generated by Dehn twists along

simple closed curves, each avoiding a sub-handlebody of genus 1 of Hg.
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Figure 2. Dehn’s generators in genus 1 and 2

Figure 3. Dehn’s generators in genus g > 2

Here Σg is regarded as the boundary of the standard handlebody Hg, and a
sub-handlebody of genus k of Hg is the image of Hk under some diffeomorphism
Hk ]∂ Hg−k ∼= Hg.

Remark 1.9. In the sixties, Lickorish rediscovered and simplified Dehn’s gener-
ating system of the mapping class group [57]. He proved that M(Σg) is actually
generated by the Dehn twists along the simple closed curves

α1, . . . , αg, β1, . . . , βg, γ1, . . . , γg−1

shown below:

α1

α2 αg−1

αg

β1 β2 βg−1 βgγ1 γg−1

. . .

Afterwards, Humphries [49] showed that 2g+1 Dehn twists are enough to generate
M(Σg): specifically, those are the twists along β1, . . . , βg, γ1, . . . , γg−1, α1, α2. �

1.3. Triviality of Ω3. Let V(∅) be the set of diffeomorphism classes of closed 3-
manifolds. (Recall that, unless otherwise stated, 3-manifolds are always oriented.)

Theorem 1.10 (Rochlin 1951, Thom 1951, Wallace 1960, Lickorish 1964). The
following four statements are equivalent, and hold true:
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(1 ) we have Ω3 = {0}, i.e. any two M,M ′ ∈ V(∅) are cobordant;
(1’) any M ∈ V(∅) is the boundary of a compact 4-manifold W ;
(2 ) for any M,M ′ ∈ V(∅), there is a sequence of surgeries along framed knots

M = M0  M1  · · · Mr = M ′;
(2’) for any M ∈ V(∅), there is a framed link L ⊂ S3 such that S3

L
∼= M .

Proof(s). The equivalence between (1) and (1’) is clear. Assuming (1), let M ∈
V(∅): there is a compact 4-manifold W ◦ such that ∂W ◦ ∼= (−S3) tM ; let W :=
W ◦ ∪∂ D4 where D4 is glued along the S3 boundary component of W ◦; then
∂W ∼= M . Assuming (1’), let M,M ′ ∈ V(∅): then (−M) tM ′ ∈ V(∅) and there
is a compact 4-manifold W with boundary (−M) tM ′.

The equivalence between (2) and (2’) is also easy. Assuming (2), let M ∈ V(∅);
there is a sequence of surgeries along framed knots S3 = M0  · · ·  Mr = M ;
for each i, we can assume that the framed knot Ki ⊂ Mi along which we do the
surgery to get Mi+1 is disjoint from the glued solid tori that correspond to the
previous surgeries, hence we can view Ki as a knot in the initial manifold S3;
then the framed link L := K0 t · · · tKr−1 is such that S3

L
∼= M . Assuming (2’),

let M,M ′ ∈ V(∅); there is a framed link L ⊂ S3 such that S3
L
∼= M ; by doing

the surgeries along the components of L stepwisely, we obtain a first sequence of
surgeries S3 = M0  · · ·  Mr = M ; similarly, we find a second sequence of
surgeries S3 = M ′0  · · ·  M ′r′ = M ′; thus, by reversing the first sequence, we
get a sequence of surgeries producing M ′ from M .

The equivalence between (1) and (2) is a result of Wallace [106]. Indeed Wallace
proved that, in any dimension m ≥ 1, two closed m-manifolds M and M ′ are
cobordant if and only if there is a sequence

M = M0  M1  · · · Mr = M ′

where Mi  Mi+1 stands for a surgery of index ki and the sequence (ki)i is not
decreasing. (In [106], surgeries are called spherical modifications.) This equivalence
follows from the existence of handle decompositions for cobordisms and the relation
between surgery and attachement of handles. Observing that, in dimension m = 3,
only surgeries of index 2 do matter (see Example 1.1), Wallace assumes (1) to
deduce (2’) thus answering a question of Bing [3].

Indeed, statement (1) had been proved independently by Rochlin [90] and Thom
[98, 99, 100]. Actually, Thom gave three proofs of very different natures: let us
expose the proof that came chronologically first and is sketched in [98]. It uses
Heegaard splittings of 3-manifolds, the key idea being that the subset

Bg :=
{

[f ] ∈M(Σg) : Mf = Hg ∪f (−Hg) bounds a compact 4-manifold
}

is a subgroup of the mapping class group, for every g ∈ N:

� 1 ∈ Bg because Mid is diffeomorphic to ]g(S1 × S2) which, for instance, is
the boundary of ]g∂(D2 × S2);

� if f ∈ Bg, then f−1 ∈ Bg because Mf−1
∼= −Mf ;

� if f, f ′ ∈ Bg, then f ′f ∈ Bg because, given a compact 4-manifold W
bounded by Mf and a compact 4-manifold W ′ bounded by Mf ′ , the 3-
manifold Mf ′f is the boundary of the 4-manifold obtained by gluing W
and W ′ along the “left side” handlebody Hg of Mf and the “right side”
handlebody −Hg of Mf ′ .
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Since any 3-manifold has a Heegaard splitting, the triviality of Ω3 will follow from
the fact that, for any g ≥ 1, we have Bg = M(Σg) or, equivalently, that each of
Dehn’s generators of M(Σg) belongs to Bg. This is proved by induction on g. In
genus g = 1, there are two generators τ (see Figure 2): the corresponding 3-manifold
Mτ is either S3 = ∂B4 or S1×S2 = ∂(D2×S2); hence B1 =M(Σ1). Assume that
Bg−1 = M(Σg−1). According to (1.2), each Dehn generator of M(Σg) is a Dehn
twist τ along a simple closed curve avoiding a sub-handlebody of genus 1 of Hg;
therefore Mτ is diffeomorphic to (S1 × S2)]Mh for some h ∈ M(Σg−1); hence Mτ

is related to Mh by a surgery of index 1, so that Mτ and Mh are cobordant; by the
induction hypothesis, Mh bounds, and so does Mτ ; hence τ ∈ Bg.

Being not aware of Dehn’s work [13], Lickorish re-proves in [57] that M(Σg) is
generated by finitely many Dehn twists (see Remark 1.9), and he shows statement
(2) in a direct way. The key idea in his argument is the following:

Lickorish’s trick. Let U and V be compact 3-manifolds whose
boundaries are identified. Let γ ⊂ ∂V be a simple closed curve,
and let K ⊂ int(V ) be the knot obtained by slightly “pushing” γ.
Then we have

U ∪τ (−V ) ∼= U ∪id (−VK)

where τ := Tγ is the Dehn twist along γ, and VK is obtained from
V by surgery along K framed with the parallel differing from γ by
a meridian of K.

This trick is easily verified using the definitions of a surgery and a Dehn twist.
Let g ∈ N and f ∈ M(Σg). Decomposing f as a product of Dehn twists (or their
inverses), Lickorish’s trick implies that Mf = Hg∪f (−Hg) can be transformed into
Mid = ]g(S1×S2) by finitely many surgeries along framed knots. The same is true
about S3, since we have S3 = Mι for some ι ∈ M(Σg) and whatever g is. Hence,
Mf can be transformed into S3 by finitely many surgeries. �

Remark 1.11. Rourke gave in [91] yet another proof of statement (2) of Theo-
rem 1.10, which is also based on the presentations of 3-manifolds by their Heegaard
splittings. But, in contrast with Thom’s and Lickorish’s arguments, his proof does
not need knowledge about the generation of the mapping class group. It is both
tricky and elementary. �

We can be more general and consider 3-manifolds with boundary. Let R be a
closed surface, which may be disconnected. A compact 3-manifold M has boundary
parametrized by R, if M comes with a map m : R → M which is an orientation-
preserving diffeomorphism onto ∂M . Our convention will always be to denote the
boundary parametrization with the lower-case letter.

Two manifolds with parametrized boundary M and M ′ are considered diffeo-
morphic if there is an orientation-preserving diffeomorphism f : M → M ′ such
that f ◦m = m′. We denote by V(R) the set of diffeomorphism classes of compact
3-manifolds with boundary parametrized by the surface R.

Corollary 1.12. For any M,M ′ ∈ V(R), there is a sequence of surgeries along
framed knots M = M0  M1  · · · Mr = M ′.

Proof. Denote by (Ri)i the family of connected components of R and, for each i,
fix an identification of Ri with the standard surface Σgi where gi is the genus
of Ri. Fix in S3 a copy H of the disjoint union −tiHgi of standard handlebodies.
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Then S3 \ int(H) with the obvious boundary parametrization defines a “preferred”
element of V(R).

We shall prove that M can be transformed into S3 \ int(H) by surgery along a
framed link L. To this purpose, we consider the closed 3-manifold

M := M ∪m
(
− tiHgi

)
.

By Theorem 1.10, there is a framed link L ⊂ M and an orientation-preserving
diffeomorphism φ : ML → S3; furthermore, we can assume that L is contained
in M after an isotopy. The image H ′ ⊂ S3 of tiHgi ⊂ M by φ is a disjoint
union of handlebodies. Of course, we have a priori H 6= H ′. Then, we think
of H and H ′ as regular neighborhoods in S3 of some knotted framed graphs G
and G′, respectively, of the same topological type. After finitely many “crossing
changes” and “framing changes”, G′ can be transformed to G since they have the
same topological type. Each of these “crossing changes” and “framing changes”
can be realized by surgery along a framed trivial knot and, after an isotopy, we
can assume that each such knot does not meet the part of S3 = φ(ML) where the
surgery along L took place. Therefore, after addition of some components to the
framed link L, we can assume that H = H ′ as subsets of S3. Hence φ restricts to
an orientation-preserving diffeomorphism ML → S3 \ int(H). This diffeomorphism
may not be compatible with the boundary parametrizations of M and S3 \ int(H).
However, sinceM(Ri) is generated by Dehn twists and since every Dehn twist can
be realized by a surgery along a knot (using Lickorish’s trick), we can assume this
compatibility at the price of adding to L yet other components. We conclude that
ML and S3 \ int(H) represent the same class in V(R). �

2. Surgery equivalence relations: definitions and first properties

We have seen in §1 that the surgery operations arising directly from differential
topology are too general in dimension three: any two compact 3-manifolds (with
the same parametrized boundary, if any) can be related one to the other by such
operations. Thus, to relate 3-manifolds in an interesting way, we need to consider
more restrictive modifications and one reasonable restriction is to require that they
preserve the homology type of 3-manifolds. So, we are led to consider the subgroup
of the mapping class group that acts trivially in homology.

2.1. Torelli groups of surfaces. Let S be a compact surface with, at most, one
boundary component. As a generalization of (1.1), the mapping class group of S is
defined by

M(S) =


{

orientation-preserving diffeomorphisms S → S
}

isotopy if ∂S = ∅,{
diffeomorphisms S → S that are the id on ∂S

}
isotopy rel ∂S

if ∂S 6= ∅.

Definition 2.1. The Torelli group of S is the subgroup I(S) of M(S) that acts
trivially on H := H1(S;Z). �

The study of the Torelli group, from algebraic and topological viewpoints, was
initiated by Birman in her early works, in particular [4, 5]. Then it was developed
considerably by Johnson in the eighties: see his survey [41]. Here we shall simply
review a generating system of I(S).
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Remark 2.2. According to Example 1.7, the Torelli group is not interesting in
genus 0 and 1: hence we shall assume that the genus of S is at least 2. �

First of all, let us determine the action of a Dehn twist in homology. For this,
we need the (homology) intersection form of the surface S

ω : H1(S;Z)×H1(S;Z) −→ Z

which is defined as follows: if a = [α] ∈ H1(S;Z) and b = [β] ∈ H1(S;Z) are
represented by smooth oriented closed curves α and β, in transverse position, then

ω([α], [β]) :=
∑

x∈α∩β

ß
+1, if (~αx, ~βx) is direct
−1, otherwise

™
.

Note that the pairing ω is bilinear, skew-symmetric and non-singular: thus, ω is a
symplectic form on H = H1(S;Z).

Lemma 2.3. Let α ⊂ S be a simple closed curve. The action of the Dehn twist Tα
in homology is given by the following formula:

(2.1) ∀x ∈ H, (Tα)∗(x) = x+ ω([α], x) · [α].

In other words, (Tα)∗ is the transvection defined by the vector [α] and the linear
form ω([α],−). Formula (2.1) is easily deduced from the definition of a Dehn twist.

Here are two immediate consequences of the transvection formula (2.1):

(i) for a simple closed curve α ⊂ S, we have Tα ∈ I(S) if and only if we have
[α] = 0 ∈ H (i.e. α is separating in S);

(ii) for any simple closed curves α, β in S such that α∩β = ∅ and [α] = [β] ∈ H
(i.e. α and β cobound a subsurface of S) we have T−1

α Tβ ∈ I(S).

Following Johnson, we call an element Tα of type (i) a BSCC map (for “Bounding
Simple Closed Curve”), and its genus is the genus of the subsurface of S bounded
by α. (If ∂S = ∅, then there are two such subsurfaces and we take the minimal
genus of those two.). Besides, we call an element T−1

α Tβ of type (ii) a BP map (for
“Bounding Pair”), and its genus is the genus of the subsurface of S with boundary
α t β. (If ∂S = ∅ and [α] 6= 0, then there are two such subsurfaces and we take
the minimal genus of those two.).

The following is a combination of several works, namely [4, 88, 38].

Theorem 2.4 (Birman 1971, Powell 78, Johnson 1979). The Torelli group I(S)
has the following generating sets, whose nature depends on the genus g and the
number n of boundary component of S:

n = 0 n = 1
g = 2 BSCC maps of genus 1 BSCC maps of genus 1 & BP maps of genus 1
g ≥ 3 BP maps of genus 1 BP maps of genus 1

One of the major accomplishments from Johnson’s works in the 80’s is the fact
that the group I(S) is finitely generated in genus at least 3 [40], but we will not need
this fact in these lectures. Note that I(S) is not finitely generated in genus 2 [58].

2.2. Torelli twists in 3-manifolds. We fix a closed surface R, which may be
disconnected.
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Definition 2.5. Let M ∈ V(R), let S ⊂ int(M) be a compact surface with one
boundary component and let s ∈ I(S). The 3-manifold obtained from M by a
Torelli twist along S with s is

(2.2) Ms :=
(
M \ int N(S)

)
∪s̃ N(S)

where N(S) is a regular neighborhood of S in M identified to S × [−1, 1], and s̃
is the self-diffeomorphism of ∂(S × [−1, 1]) given by s on S × {1} and the identity
elsewhere. With the obvious boundary parametrization ms : R → Ms induced
by m, we get Ms ∈ V(R). �

Equivalently, Ms is obtained by cutting open M along S and gluing back with s:

M Ms

S

 s

Definition 2.6. Let M,M ′ ∈ V(R). We say that M and M ′ are Torelli–equivalent
if there is a compact surface S ⊂ int(M) and an s ∈ I(S) such that Ms

∼= M ′. �

Lemma 2.7. The Torelli–equivalence is a non-trivial equivalence relation on V(R).

Proof. The Torelli-equivalence is clearly reflexive and symetric as a relation in V(R).
We verify the transivity by considering a first Torelli twist M  Ms = M ′ along
S ⊂M and a second one M ′  M ′s′ along S′ ⊂M ′. Since S′ deformation retracts
onto a 1-dimensional subcomplex and since the part N(S) ⊂Ms of the decomposi-
tion (2.2) is a handlebody which also retracts to a 1-dimensional subcomplex, we
can isotope S′ in M ′ so that it lies in the part M \ int N(S) ⊂ Ms of the decom-
position (2.2). Hence we can view S′ as a subsurface of M , disjoint from S. We
attach to S t S′ a 1-handle, inside M , to get a larger subsurface T := S]∂S

′ of M .
We have t := s]∂s

′ ∈ I(T ) and M ′′ ∼= Mt. Hence M ′′ is Torelli-equivalent to M .
To prove that the Torelli–equivalence is a non-trivial relation, we observe that

a Torelli twist M  Ms induces a unique isomorphism in homology such that the
following diagram is commutative:

(2.3) H1(M ;Z) '
ψs // H1(Ms;Z)

H1

(
M \ int N(S);Z

)incl∗

hhhh

incl∗

66 66

(The unicity follows from the surjectivity of the homomorphism incl∗ induced by
the inclusion M \ int N(S) ↪→ M , and the existence is justified using the Mayer–
Vietoris theorem.) Hence two manifolds in V(R) with different homology types can
not be Torelli–equivalent. �

We now give another description of the Torelli–equivalence. Let M ∈ V(R). A
Y -graph in M is a surface G ⊂ int(M) consisting of one “node”, three “edges” and
three “leaves” as shown on the left side of Figure 4. The regular neighborhood of
G is a handlebody of genus 3, inside which G can be replaced by the 6-component
framed link shown on the right side of Figure 4 (using the blackboard framing
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convention): to get this link, the node of G is replaced by one copy of the borromean
rings, and each leaf of G becomes a knot “clasping” one of those three rings. We
define MG to be the 3-manifold obtained from M by surgery along this framed link,
and we call the move

M  MG

a Y -surgery. This operation is equivalent to the “borromean surgery” move that
Matveev considered in [68]. Under this form, this operation was introduced by
Goussarov [27] and Habiro [30] as part of a much larger package which is now
known as “clasper calculus”: see §2.5 below.

−→node

edge

leaf

Figure 4. A Y -graph and the associated framed link

Proposition 2.8. Two manifolds M,M ′ ∈ V(R) are Torelli–equivalent if, and only
if, there is a sequence of Y -surgeries M = M0  M1  · · · Mr = M ′.

Sketch of the proof. In the definition of a Torelli twist M  Ms along S ⊂ M , we
can assume that the genus of S is arbitrary high: indeed, we can always take the
boundary-connected sum of S with another subsurface U of M (with ∂U ∼= S1)
and extend s by the identity to a diffeomorphism of S]∂U . Besides, we know from
Theorem 2.4 that I(S) is generated by BP maps of genus 1 if the genus of S is at
least 3. Hence it is enough to show that a Y -surgery is equivalent to a Torelli twist
M  Ms defined by a BP map s of genus 1.

Using Lickorish’s twist, we see that Ms
∼= MAtB where AtB is the 2-component

link in M given by the two curves α t β ⊂ S that define the BP map s, with the
appropriate framings. Then the rest of the argument consists in showing that
surgery along A tB is equivalent to the surgery along a 6-component framed link
defining a Y -surgery: this is explained in [22, Lemma 5.1] or [63, Fig. 6.2]. �

Remark 2.9. A blink of genus h in a compact 3-manifold M is a compact surface
B ⊂ int(M) of genus h with two boundary components ∂B = B+ t (−B−): the
knot B± is framed with the parallel given by the curve ∂N(B±)∩B and corrected
by the meridian ±µ(B±). Surgeries along blinks have been considered in [35, 68]
and [23], where the term “blink” was coined. As in the proof of Proposition 2.8, we
deduce from Lickorish’s trick that surgery along a blink is equivalent to a Torelli
twist with a BP map of the same genus. Thus two manifolds M,M ′ ∈ V(R) are
Torelli–equivalent if, and only if, one can find a disjoint union B = tiBi of blinks
in M such that MB

∼= M ′. �

Finally, we give another description of the Torelli–equivalence in terms of Hee-
gaard splittings. However, we only formulate this description for the two instances
of a surface R that we shall consider later:
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(i) R = ∅: then V(R) consists of closed 3-manifolds;
(ii) R = ∂(Σ× [−1, 1]) where Σ is a compact surface with ∂Σ ∼= S1: then V(R)

consists of cobordisms (with “vertical” boundary) from Σ to Σ.

The notion of “Heegaard splitting” in the case (i) has been seen in Example 1.5,
and it can be reformulated as follows. A Heegaard splitting of genus g of a closed
3-manifold M is a decomposition M = M− ∪ M+ where M− and M+ are two
copies of the handlebody Hg in M such that M−∩M+ = ∂M± (which is called the
Heegaard surface).

Likely, the notion of “Heegaard splitting” in the case (ii) is defined as follows.
Let M be a cobordism from Σ to Σ. We set ∂±M := m(Σ×{±1}), and we denote
a collar neighborhood of ∂−M (resp. ∂+M) simply by ∂−M × [−1, 0] (resp. ∂+M ×
[0, 1]). A Heegaard splitting of M of genus g is a decomposition M = M− ∪M+,
where M− is obtained from ∂−M × [−1, 0] by adding g 1-handles along ∂−M ×{0},
M+ is obtained from ∂+M × [0, 1] by adding g 1-handles along ∂+M ×{0}, and we
have M−∩M+ = ∂M−∩∂M+ (which is called the Heegaard surface). The existence
of Heegaard splittings in this situation (cobordisms with “vertical” boundary) is
again an application of Morse theory.

Proposition 2.10. Assume that R is of one of the above types (i) and (ii). Two
manifolds M,M ′ ∈ V(R) are Torelli–equivalent if, and only if, there is a Heegaard
splitting M = M− ∪ M+ with Heegaard surface S and an s ∈ I(S) such that
M ′ ∼= M− ∪sM+.

Proof. We only prove the proposition in the case (i), the case (ii) being similar
and a little bit more technical (see [67, Lemma 2.1] for instance). It is enough to
show that, given a closed 3-manifold M and a surface E ⊂ M with one boundary
component, we can always find a Heegaard splitting M = M−∪M+ whose Heegaard
surface contains a subsurface that is isotopic to E in M .

Let N(E) be a regular neighborhood of E in M and set M̃ := M \ int N(E).

Viewing M̃ as a cobordism from ∅ to ∂N(E), we can find a handle decomposition

M̃0 ⊂ M̃1 ⊂ M̃2 = M̃

where M̃0 consists of a single 0-handle, M̃1 is obtained from M̃0 by attaching 1-
handles and M̃2 is obtained from M̃1 by attaching 2-handles. The latter can be
viewed, dually, as 1-handles attached to N(E) inside M . Hence there is a Heegaard
splitting M = M− ∪M+ where

M− := M̃1 and M+ :=
(
M̃2 \ int(M̃1)

)
∪N(E).

Observe that E can be isotoped in N(E) onto ∂N(E); furthermore, since E defor-
mation retracts onto a 1-dimensional subcomplex, we can next isotope it in ∂N(E)
to make it disjoint from the attaching locus of the 1-handles attached to N(E).
Thus we have isotoped E to a subsurface of the Heegaard surface. �

2.3. Filtrations on the Torelli groups. We will define surgery equivalence re-
lations for 3-manifolds which are much stronger than the Torelli–equivalence and
arise from certain filtrations of the Torelli group.

To define these filtrations, we first recall that the lower central series of a group G
is the decreasing sequence of subgroups

(2.4) G = Γ1G ⊃ Γ2G ⊃ Γ3G ⊃ · · ·
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that are defined inductively by Γi+1G := [ΓiG,G] for all i ≥ 1. Let S be a compact
surface with one boundary component, and fix a base-point ? ∈ ∂S. The canonical
action of I(S) on the fundamental group π := π1(S, ?) induces, for every integer
k ≥ 1, a group homomomorphism

(2.5) ρk : I(S) −→ Aut(π/Γk+1π)

since Γk+1π is a characteristic subgroup of π. Defining JkI(S) := ker(ρk) for
every k ≥ 1, we get a filtration of the Torelli group

I(S) = J1I(S) ⊃ J2I(S) ⊃ J3I(S) ⊃ · · ·

which is nowdays refered to as the Johnson filtration of I(S). The study of the
Johnson filtration on its whole started in Morita’s seminal work [75], and it is still
an active field of research. (See [92] for a survey.)

Example 2.11. Johnson made a deep study of the second term of the filtration

K(S) := J2I(S)

in [42, 43], so much that this group is called the Johnson subgroup (or the Johnson
kernel). In particular, Johnson proved that K(S) is generated by BSCC maps. �

One of the main reasons to be interested in this filtration is that it has a trivial
intersection ⋂

k≥1

JkI(S) = {1}

as can be easily checked from the following two classical facts:

(i) (Baer 1928) the canonical action of I(S) on π is faithful [2];
(ii) (Magnus 1937) the lower central series of π has a trivial intersection, be-

cause π is free [59].

Thus, one of the main objectives of the study of the Johnson filtration is to fully
understand its associated graded, namely

GrJ I(S) =
⊕
k≥1

JkI(S)

Jk+1I(S)
.

Another interesting feature of the Johnson filtration is that it is strongly central in
the sense that

(2.6) ∀k, l ∈ N∗,
[
JkI(S), JlI(S)

]
⊂ Jk+lI(S)

(see [75, Prop. 4.1]). Consequently, the commutator operation in the group I(S)

induces a Lie ring structure on GrJI(S), which opens the door to Lie-theoretical
methods in the study of I(S). (Again, see [92] for a survey.)

The Johnson filtration has also been much studied in relation with the lower
central series I(S) = Γ1I(S) ⊃ Γ2I(S) ⊃ Γ3I(S) ⊃ · · · of the Torelli group.
Indeed, (2.6) implies that the latter is contained in the former:

(2.7) ∀k ∈ N∗, ΓkI(S) ⊂ JkI(S).

The associated graded of the lower central series of the Torelli group

(2.8) GrΓ I(S) =
⊕
k≥1

ΓkI(S)

Γk+1I(S)
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has been determined with rational coefficients by Hain [34], as part of the stronger
result of identifying the Malcev Lie algebra of I(S). For a comparison between

GrΓ I(S)⊗Q and GrJ I(S)⊗Q in low degrees, see [76, 77].

Remark 2.12. Hain also obtained in [34] that the inclusion reciprocal to (2.7) is
not true: specifically, there is no d ∈ N∗ such that JdI(S) ⊂ Γ3I(S). �

The above paragraphs only give a brief and limited overview of what is known
about the Johnson filtration and the lower central series of the Torelli group. We
conclude this subsection with an informal “comparison table” between those two
filtrations:

lower central series
(
ΓkI(S)

)
k

Johnson filtration
(
JkI(S)

)
k

trivial intersection? yes yes

testing elements ? given h ∈ I(S) and k ∈ N∗, given h ∈ I(S) and k ∈ N∗,
it is hard to decide it is easy to decide
whether h ∈ ΓkI(S) whether h ∈ JkI(S)

unless k is small (say k ≤ 3) using “Johnson homomorph.”

explicit generators ? it is easy to deduce an explicit it seems difficult to construct
generating syst. in any degree k an explicit generating syst.
from a generating syst. of I(S) in a given degree k

finitely generated? yes, in any degree k: yes, in any degree k:
if g ≥ 3 for k = 1 [40] if g ≥ 3 for k = 1 [40]

if g ≥ 4 for k = 2 [16, 10] if g ≥ 4 for k = 2 [16, 10]
if g ≥ 2k − 1 for k ≥ 3 [10] if g ≥ 2k − 1 for k ≥ 3 [10]

2.4. Stronger surgeries in 3-manifolds. We are now in position to introduce
two families of surgery equivalence relations that refine the Torelli–equivalence. We
fix a closed surface R, which may be disconnected.

Definition 2.13. Let k ∈ N∗. Two 3-manifolds M,M ′ ∈ V(R) are Jk-equivalent
(resp. Yk-equivalent) if M ′ can be obtained from M by a Torelli twist M  Ms

along a surface S ⊂ int(M) with an s ∈ JkI(S) (resp. an s ∈ ΓkI(S)). �

Of course, the J1-equivalence and Y1-equivalence are just the same as the Torelli-
equivalence.

Lemma 2.14. For every k ∈ N∗, the Jk-equivalence (resp. the Yk-equivalence) is
an equivalence relation in V(R).

Proof. We come back to the proof of Lemma 2.7, using the same notations.
If we have s ∈ JkI(S) and s′ ∈ JkI(S′), then s]∂s

′ belongs to JkI(S]∂S
′) as can

be checked from the fact that π1(S]∂S
′) is the free product of π1(S) and π1(S′).

This proves the transitivity of the Jk-equivalence.
If we have s ∈ ΓkI(S) and s′ ∈ ΓkI(S′), then s]∂s

′ belongs to ΓkI(S]∂S
′) as

follows from the fact that s]∂s
′ = (s]∂ id) ◦ (id ]∂s

′). This proves the transitivity of
the Yk-equivalence. �

Remark 2.15. Proposition 2.10 can also be refined to reformulate the Jk-equivalence
(resp. the Yk-equivalence) in terms of Heegaard splittings. �

We deduce from (2.7) the following “ladder” of equivalence relations:

Y1 ⇐= Y2 ⇐= Y3 ⇐= · · · Yk ⇐= Yk+1 ⇐= · · ·
‖ ⇓ ⇓ ⇓ ⇓
J1 ⇐= J2 ⇐= J3 ⇐= · · · Jk ⇐= Jk+1 ⇐= · · ·
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Note that the converse of the implication “Yk ⇒ Jk” is not true. Specifically, there
is no d ∈ N∗ such that “Jd ⇒ Y3”: this can be easily deduced from Hain’s result
mentioned in Remark 2.12.

After Y1 = J1, the next equivalence relation to consider is the J2-equivalence.
Let us give an alternative description in terms of surgeries along knots. Given
M ∈ V(R) and a null-homologous knot K ⊂ int(M), there is a unique parallel
ρ0(K) ⊂ ∂N(K) that is null-homologous in M \K: for any n ∈ Z, the knot K is
said to be n-framed if it is equipped with the unique parallel ρn(K) that represents
the homology class n[µ(K)]+[ρ0(K)] ∈ H1

(
∂N(K);Z

)
. (Here, we fix an orientation

of K, we orient ρ0(K) compatibly with K and orient µ(K) with the right-hand rule
using the orientation of M .) Following Cochran, Gerges and Orr [11], we say that
an M ∈ V(R) is 2-surgery equivalent to an M ′ ∈ V(R) if there is a finite sequence

M = M0  M1  · · · Mr = M ′

of surgeries along null-homologous (±1)-framed knots.

Proposition 2.16. The J2-equivalence is the same as the 2-surgery equivalence.
In particular, the 2-surgery equivalence is an equivalence relation in V(R).

Proof. Assume that M,M ′ are J2-equivalent: then there is a surface S ⊂ int(M)
and an s ∈ J2I(S) such that M ′ ∼= Ms. According to what has been mentioned in
Example 2.11, s decomposes as a product of BSCC maps (or their inverses). Thus,
by considering parallel copies of S, we find a finite sequence

M = M0  M1  · · · Mr = M ′

where each move Mi  Mi+1 is a Torelli twist defined by a BSCC map (or its
inverse). By Lickorish’s trick, such a move can be interpreted as a surgery along a
null-homologous (±1)-framed knot. So M is 2-surgery equivalent to M ′.

Assume now that M is 2-surgery equivalent to M ′. We wish to prove that M
and M ′ are J2-equivalent. By transitivity of J2, we can assume that M ′ is obtained
from M by a single surgery along a null-homologous (±1)-framed knot K ⊂ M .
There is a Seifert surface for K in M , i.e. a compact surface Σ such that ∂Σ = K.
The regular neighborhood N(Σ) is a handlebody, in which K can be viewed as a
push-off of a bouding simple closed curve γ ⊂ ∂N(Σ). Then, by Lickorish’s trick,
M ′ = MK is diffeomorphic to

(
M \ int N(Σ)

)
∪τ N(Σ) where τ := Tγ . Hence M ′ is

the result of the Torelli twist M  Ms along the surface S obtained from ∂N(Σ)
by cutting a small open disk, with s := Tγ ∈ J2I(S). �

Remark 2.17. A boundary link in a compact 3-manifold M is a framed link
L = tiLi for which there exists a compact surface S = tiSi ⊂ int(M) with as
many connected components as L, such that ∂Si = Li and the parallel of Li differs
from the curve ∂N(Li) ∩ Si by ±µ(Li). Surgeries along boundary links have been
considered in [68, 23, 11], for instance. The argument used in the proof of Proposi-
tion 2.16 shows that surgery along a boundary link is equivalent to the simultaneous
realization of Torelli twists by BSCC maps on pairwise-disjoint surfaces. Thus two
manifolds M,M ′ ∈ V(R) are J2-equivalent if, and only if, one can find a boundary
link L in M such that ML

∼= M ′. �

In general, Cochran, Gerges and Orr make in [11] the following definition for any
integer k ≥ 2.
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Definition 2.18. A manifold M ∈ V(R) is k-surgery equivalent to an M ′ ∈ V(R)
if there is a finite sequence

M = M0  M1  · · · Mr = M ′

where each move Mi  Mi+1 is the surgery along a (±1)-framed knot Ki that is
trivial in Γkπ1(Mi). �

It turns out that the k-surgery equivalence is indeed an equivalence relation
[11, Cor. 2.2 & Prop. 2.3]. But k-surgery equivalence is very different from Jk-
equivalence in higher degree k: while the former is rather well understood, the
latter still remains unexplored (see §3.5). In fact, since one does not know explicit
generating systems for the Johnson filtration, it seems that one does not know
generators for the Jk-equivalence relation for k > 2.

2.5. Clasper calculus. In contrast with the Jk-equivalence, explicit generators
are known for the Yk-equivalence: these are defined in terms of “surgeries” along
certain framed graphs, and generalize in degree k > 1 the Y -surgeries that have
been recalled in §2.2. These surgery techniques were developed independently by
Goussarov [27, 28] and Habiro [30].

We give a very brief overview of those techniques, using Habiro’s terminology
and conventions. Let M ∈ V(R). A graph clasper in M is a (possibly disconnected)
compact surface G ⊂ int(M), which is decomposed into leaves, nodes and edges.
Leaves are copies of the annulus S1×D1 and nodes are copies of the disc D2. Edges
are 1-handles (i.e. copies of D1 ×D1) connecting those leaves and nodes; the ends
of an edge constitute the attaching locus of the 1-handle (i.e. S0 ×D1). There are
two rules to respect in the attachment: each leaf receives exactly one end of an
edge, and each node receives exactly three ends of edges. The degree of G is the
number of its nodes. The shape of G is the abstract graph, whose vertices have
valency 1 or 3, onto which G deformation retracts after deletion of all of its leaves.

Example 2.19. Graph claspers of degree 0 (and shape I) are called basic claspers
and consist of only one edge and two leaves:

A connected graph clasper of degree 1 (and shape Y) is a Y -graph, as shown in
Figure 4. Here is an example of a connected graph clasper of degree 3:

�

Surgery along a graph clasper G ⊂ int(M) is defined as follows. We first replace
each node with three leaves in a “Borromean rings” fashion:
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−→

This results in a disjoint union of basic claspers, which we replace by 2-component
framed links as follows:

−→

(For instance, if we start from a Y -graph G, then we recover the 6-component
framed link shown in Figure 4.) Then, the surgery M  MG along G is defined
as the surgery along the resulting framed link in M , and we have the following
generalization of Proposition 2.8:

Proposition 2.20 (Habiro 2000). For any integer k ≥ 1, the Yk-equivalence rela-
tion is generated by surgeries along connected graph claspers of degree k.

See [30], and the appendix of [63] for a proof. Note that the Yk-equivalence appears
in the works of Goussarov and Habiro under different names: it is named “(k− 1)-
equivalence” in [27] and “Ak-equivalence” in [30].

There exists a clasper calculus, which has been developed in [28, 30, 22]. This
calculus can be regarded as a braided version of the commutator calculus in groups
or, to be more accurate, an instance of the braided Hopf-algebraic calculus. In
the setting of [30], there is a notion of “clasper”, which is more general than the
above notion of “graph clasper”, and there are 12 “moves” which can be applied to
claspers without changing the diffeomorphism types of the resulting manifolds.

Thanks to Proposition 2.20, this clasper calculus can be used to show that certain
operations G G′ on graph claspers will not change the Y`-equivalence class of the
resulting manifold, for ` large enough depending on the degrees of the components
of G and the nature of the operation. Thus, these operations are very useful tools
to study sets of Yk-equivalence classes up to Y`-equivalence for some ` > k.

Here are some instances of such operations on graph claspers, taking place in a
manifold M ∈ V(R) which we fix from now on:

(O0) Cutting an edge. Any graph clasper G can be transformed to a graph
clasper G′ (of the same degree, but not the same shape) by insertion of a
Hopf link of two leaves at the middle of an edge:

G G′
∼=

(In fact, this operation is Habiro’s “Move 2” [30].)

(O1) Developing a node. Any graph clasper G of degree k + 1, showing one
node incident to two leaves, can be transformed to a graph clasper G′ of
degree k by the following transformation:
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G G′

∼=

(In fact, this operation is essentially Habiro’s “Move 9” [30].)

(O2) Sliding an edge. If G is a connected graph clasper of degree k in M and
if G′ is obtained from G by sliding one of its edges along a disjoint framed
knot K, then we have MG ∼Yk+1

MG′ :

G

K

G′

∼Yk+1

(O3) Cutting a leaf. If G is a connected graph clasper of degree k in M with a
leaf L decomposed as L = L1]L2, then we have MG ∼Yk+1

MG1tG2
where

Gi is G with the leaf L replaced by the “half-leaf” Li and G1 t G2 is a
disjoint union of G1 and G2:

G

L

G1 G2

L1 L2

∼Yk+1

(O4) Crossing a leaf with a leaf. If G1 t G2 is the disjoint union of two
connected graph claspers in M of degrees k1 and k2, respectively, and if
G′1tG′2 is obtained from G1tG2 by crossing a leaf of G1 with a leaf of G2,
then we have MG1tG2

∼Yk1+k2
MG′1tG′2 .

(O5) Half-twisting an edge. If G is a connected graph clasper of degree k in M
and if G− is obtained from G by adding a half-twist to an edge, then there
is a disjoint union GtG− of G and G− in M such that MGtG− ∼Yk+1

M .

Remark 2.21. References for the above operations on graph claspers include [30]
(in the case of links instead of 3-manifolds), [28], [22], [21], [85, §E] and [62]. �

In the rest of this subsection, we outline the general strategy to study the Y`-
equivalence relations using the above techniques of clasper calculus. So, let us
assume that we have been able to classify the Yk-equivalence relation on V(R) for
some k ≥ 1, and that we now wish to classify the Yk+1-equivalence on a specific
Yk-equivalence class

V0 ⊂ V(R).



SURGERY EQUIVALENCE RELATIONS FOR 3-MANIFOLDS 23

For this, we fix a 3-manifold V ∈ V0 and we consider the free abelian group Z·Ck
generated by the set

Ck :=
{

connected graph claspers in V of degree k
}/

isotopy.

Then we consider the map

ψk : Z·Ck −→
V0

Yk+1
,
∑
i

εiGi 7−→
[
V(tiG

εi
i )

]
.

where, for a family (Gi)i of connected graph claspers of degree k in V weighted by
a family of signs (εi)i, we choose an arbitrary disjoint union tiGεii of the graph
claspers Gεii using the convention that G−i := (Gi with an half-twist on a edge) and
G+
i := Gi. That ψk is well-defined follows from the operations (O2), (O4), (O5).
Let us show that ψk is surjective. Any M ∈ V0 is Yk-equivalent to V and, so, by

Proposition 2.20, there is a sequence V = M0  M1  · · · Mr = M where each
move Mi  Mi+1 is either a surgery along a connected graph clasper of degree k, or
the inverse of such a surgery; furthermore, thanks to (O0), we can assume that each
graph clasper involved in the sequence is tree-shaped. Now, any surgery W  WT

along a tree-shaped graph clasper T in a 3-manifold W has the following properties:

� it is reversible, in the sense that there is a graph clasper I (of the same
shape as T ) in WT , such that (WT )I ∼= W ;
� there is a t ∈M(∂N(T )) such that WT

∼= (W \ int N(T ))∪tN(T ), hence any
graph clasper in WT can be isotoped into the subset W \ int N(T ) of WT .

It follows that there exists a disjoint union G = tiGi of (tree-shaped) connected
graph claspers of degree k in V such that VG ∼= M . We deduce that ψk(

∑
iGi) = M .

Thus, we would like to understand the equivalence relation ∼ on Z·Ck such that
the map ψk factorizes to a bijection on the quotient set:

Z·Ck

����

ψk // //
V0

Yk+1

Z·Ck
∼

ψk

'

99 99

For instance, it follows from (O2) that we must have G′ ∼ G± for any graph
claspers G and G′ in M which have the same shape and the same leaves. Besides,
there are other instances of the relation ∼ that deal with leaves and result from
(O0), (O1) and (O3). Finally, using other operations on graph claspers (not in the
above list), we obtain other instances of the relation ∼ that do not affect the leaves
but change the shape: one such example is the so-called “IHX relation”. Once we
have a candidate for the relation ∼, the difficulty is then to show the injectivity of
the resulting map ψk : Z·Ck/∼ → V0/Yk+1. This is proved by finding sufficiently
enough topological invariants on V(R) — or, at least, on its subset V0 — that are
unchanged by Yk+1-surgery and constitute a left-inverse Zk to ψk when they are
conveniently assembled all together:

Z·Ck
∼

ψk // //

id
99

V0

Yk+1

Zk //
Z·Ck
∼
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At the end of this process, we conclude that ψk is injective and, so, bijective, thus
obtaining a combinatorial description of the quotient set V0/Yk+1, and concluding
that the invariant Zk classifies the Yk+1-equivalence relation on V0.

Remark 2.22. In all the few situations that the author knows, the relation ∼ on
Z·Ck happens to be always defined by a subgroup of Z·Ck: hence V0/Yk+1 has a
structure of abelian group, although V0 may not have (a priori) a natural operation.
If V0 does have a natural operation compatible with the Yk+1-equivalence and if we
know that V0/Yk+1 inherits a structure of abelian group, it is often much easier to
carry on the above process with rational coefficents in order to get a combinatorial
description of the vector space

(
V0/Yk+1

)
⊗Q. �

The above “general strategy”, to study inductively the Y`-equivalence relations
by clasper calculus, will be mentioned in the next sections in a few examples.

2.6. Other kinds of surgeries. To conclude this section, we mention yet other
surgery equivalence relations. Some of them are just alternative descriptions of the
relations that have been introduced in the previous subsections, but other ones are
quite different. We fix a closed surface R, which may be disconnected.

(1) LP surgeries. A homology handlebody of genus g is a compact 3-manifold
C ′ with the same homology type as Hg; the Lagrangian of C ′ is the kernel
LC′ of the homomorphism H1(∂C ′;Z) → H1(C ′;Z) induced by the inclu-
sion ∂C ′ ↪→ C ′: this is a Lagrangian subgroup of H1(∂C ′;Z) with respect
to the intersection form. Following Auclair and Lescop [1], we call LP-pair
a couple C = (C ′, C ′′) of two homology handlebodies whose boundaries
are identified ∂C ′ = ∂C ′′ in such a way that LC′ = LC′′ . (The acronym
“LP” is for “Lagrangian-Preserving”.) Given an M ∈ V(R) and an LP pair
C = (C ′, C ′′) such that C ′ ⊂M , one can replace in M the submanifold C ′

by C ′′ to obtain a new 3-manifold

MC := (M \ int(C ′)) ∪∂ C ′′.

The move M  MC in V(R) is called an LP-surgery.
A Torelli twist M  Ms can be interpreted as an LP-surgery since a

regular neighborhood of the surface S ⊂ M is a handlebody. Conversely,
an LP-surgery can be realized by finitely many Y -surgeries because, for any
LP pair C, the homology handlebodies C ′ and C ′′ are Torelli–equivalent.
(See Remark 3.9 below.) Therefore, LP-surgery equivalence is the same as
Torelli–equivalence.

There is also a rational version of the LP-surgery using H1(−;Q) instead
of H1(−;Z), which has been considered by Moussard [78]. However, ratio-
nal LP-surgery equivalence is coarser than Torelli–equivalence as a relation.

(2) Torelli surgeries. Let M ∈ V(R), let C ⊂ M be a handlebody and let
c ∈ I(∂C). Following Kuperberg and Thurston [50], we say that

Mc :=
(
M \ int(C)

)
∪c C

is obtained from M by a Torelli surgery along C. Clearly, a Torelli surgery
can be realized by a Torelli twist (by choosing a small open disk D ⊂ ∂C
and isotoping c so that it fixes D pointwisely); conversely, a Torelli twist can
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be realized by a Torelli surgery (because a regular neighborhood of a surface
with non-empty boundary is a handlebody). Thus, the Yk-equivalence and
Jk-equivalence relations can be reformulated in terms of Torelli surgeries.

(3) Lagrangian Torelli surgeries. Let C be a handlebody. The Lagrangian
Torelli group of S := ∂C \ (small open disk) is defined by

IL(S) :=
{
f ∈M(S) : f∗(LC) ⊂ LC and f∗ is the id on H1(S;Z)

LC

}
where LC is the Lagrangian of C. A Lagrangian Torelli surgery is defined in
a way similar to a Torelli surgery using the Lagrangian Torelli group instead
of the Torelli group. Clearly, a Lagrangian Torelli surgery is a special case
of an LP surgery: therefore, the equivalence relation defined by Lagrangian
Torelli surgeries is again the Torelli–equivalence.

Nevertheless, following Faes [17, §A], we can define a new family of
equivalence relations on V(R) by considering the following filtration on the
Lagrangian Torelli group of a handlebody C. Let LC denote the kernel of
the homomorphism p : π1(S) → π1(C) induced by the inclusion S ↪→ C
and consider, for any integer k ≥ 1, the subset

LkIL(S) :=
{
f ∈ IL(S) : pf∗(LC) ⊂ Γk+1π1(C)

}
of the mapping class group of S. According to Levine [55, 56], the filtration

IL(S) = L1IL(S) ⊃ L2IL(S) ⊃ L3IL(S) ⊃ · · ·

is a decreasing sequence of subgroups of the Lagrangian Torelli group, which
contains the Johnson filtration of the Torelli group I(S). But, in contrast
with the latter, the intersection of the former is not trivial: its intersection
is the subgroup of IL(S) consisting of all diffeomorphisms that extend to
the full handlebody C; hence this intersection is irrelevant for Lagrangian
Torelli surgeries.

Thus, it is interesting to consider the following relation for any k ∈ N∗:
we say that M,M ′ ∈ V(R) are Lk-equivalent if M ′ can be obtained from M
by a Lagrangian Torelli surgery M  Mc along a handlebody C ⊂ int(M)
with a c ∈ LkI(S). Clearly, we have “Jk ⇒ Lk” for any k ≥ 1. We
have already mentioned the equality of relations L1 = J1, and it follows
essentially from Levine’s results that L2 = J2. However, the L3-equivalence
is strictly weaker than the J3-equivalence as a relation [17, §A].

3. Surgery equivalence relations: their characterization

In this section, we review several results from the middle 1970’s to nowadays,
which provide characterizations of the Jk-equivalence, the Yk-equivalence, and the
k-surgery equivalence relations in terms of topological invariants (for some or all
values of k ∈ N∗).

3.1. Two case studies to consider. Let R be a compact surface. The problem
of characterizing surgery equivalence relations in V(R) is very much dependent on
the choice of R. So we shall restrict ourselves to the two cases that we have already
mentioned on page 15:

(i) R = ∅; (ii) R = ∂(Σ× [−1, 1]) where Σ is a compact surface with ∂Σ ∼= S1.
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Actually, in case (i), our interest in the set of closed 3-manifolds V(∅) will quickly
specialize to the class

S :=
{
M ∈ V(∅) : H∗(M ;Z) ' H∗(S3;Z)

}
of homology 3-spheres. Of course, this is a strong restriction but, as we shall see, S
is still a very rich set-up for studying surgery equivalence relations.

Remark 3.1. The set S with the connected sum operation ] is a monoid, whose
neutral element is S3. �

Similarly, in case (ii), our interest in the set V
(
∂(Σ × [−1, 1])

)
of cobordisms

will be restricted to the subset IC(Σ) of homology cylinders over Σ. Those are
cobordisms (C, c) from Σ to Σ such that the boundary parametrizations

c+ := c|Σ×{+1} : Σ −→ C and c− := c|Σ×{−1} : Σ −→ C

induce isomorphisms in homology and satisfy c+,∗ = c−,∗ : H1(Σ;Z)→ H1(C;Z):

C

c+

c−

Σ

Σ

Two cobordisms (C, c) and (D, d) from Σ to Σ can be multiplied by gluing D “on
the top of” C, using the boundary parametrizations d− and c+ to identify d−(Σ)
with c+(Σ):

C

c+

c−

Σ

Σ

◦ D

d+

d−

Σ

Σ

:=

Σ

Σ

D

C

c−

d+

It is easily checked that C ◦ D ∈ IC(Σ) if C,D ∈ IC(Σ). Hence the set IC(Σ)
with this operation ◦ is a monoid, whose neutral element is the trivial cylinder
U := Σ× [−1, 1] (with the obvious boundary parametrization).

Proposition 3.2. The “mapping cylinder” construction defines a monoid homo-
morphism cyl : I(Σ) → IC(Σ), which is injective and surjective onto the group of
invertible elements of IC(Σ).

About the proof. A diffeomorphism f : Σ → Σ defines a cobordism cyl(f) from Σ
to Σ whose underlying 3-manifold is the trivial cylinder U and whose boundary
parametrization ∂(Σ× [−1, 1]) → ∂U is given by f on the top surface Σ × {+1}
and by the identity elsewhere. Clearly, the diffeomorphism class of cyl(f) only
depends on the isotopy class of f and, obviously, cyl(f) is a homology cylinder if f
induces the identity in homology.

Thus we obtain a map cyl : I(Σ)→ IC(Σ). Clearly it is multiplicative, and it is
injective for the following reason: two diffeomorphisms Σ → Σ are isotopic rel ∂Σ
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if and only if they are homotopic rel ∂Σ, by the classical result of Baer [2] that we
have already alluded to at page 17. The image of cyl is determined in [32, Prop.
2.4], for instance. �

The following is easily checked.

Proposition 3.3. The map ι : S → IC(Σ) defined by ι(M) := M]U is an injection
of monoids, and it is an isomorphism for Σ = D2.

Thus, the monoid of homology cylinders IC(Σ) can be viewed as a simultaneous
generalization of the Torelli group I(Σ) and the monoid S.

3.2. Characterization of the Torelli–equivalence. The most fundamental re-
sult is the characterization of the Torelli–equivalence, which has been obtained for
closed 3-manifolds by Matveev [68]. To state his result, we recall that the linking
number

(3.1) Lk(K,L) ∈ Q
of two disjoint oriented knots K,L in a closed 3-manifold M is defined when K and
L are rationally null-homologous: let n ∈ N∗ be such that n[K] = 0 ∈ H1(M ;Z)
and let Σ ⊂ M be a surface transverse to L such that ∂Σ consists of n parallel
copies of the knot K; then

(3.2) Lk(K,L) :=
1

n
Σ • L

where Σ • L ∈ Z denotes the algebraic intersection number. It can be verified that
the class of Lk(K,L) modulo 1 only depends on the integral homology classes of K
and L. Hence we get a map

λM : TorsH1(M ;Z)× TorsH1(M ;Z) −→ Q/Z, ([K], [L]) 7−→
(

Lk(K,L) mod 1
)

which is called the (torsion) linking pairing of M and is one of the eldest invariants
of closed 3-manifolds [94, §77]. The map λM is bilinear, symmetric and non-singular
(see [64, Lemma 6.7], for instance).

Theorem 3.4 (Matveev 1987). Two manifolds M,M ′ ∈ V(∅) are Torelli–equivalent
if, and only if, there is an isomorphism ψ : H1(M ;Z) → H1(M ′;Z) such that the
following diagram is commutative:

(3.3) Tors H1(M ;Z)× Tors H1(M ;Z)
λM //

ψ×ψ '
��

Q/Z

Tors H1(M ′;Z)× Tors H1(M ′;Z)

λM′

33

Sketch of proof. Assume that M and M ′ are Torelli–equivalent. Hence there is a
Torelli twist M  Ms along a surface S ⊂ M such that Ms

∼= M ′. This surgery
induces an isomorphism ψ := ψs in homology, as described by (2.3). Using the
notations of (3.2) and setting x := [K] and y := [L], we have

λM (x, y) =
1

n
Σ • L mod 1.

Since the handlebody N(S) = S× [−1, 1] deformation retracts onto a 1-dimensional
subcomplex, we can isotope K and L in M to make them disjoint from N(S):
hence, as subsets of M \ int N(S), K and L can also be regarded as knots in
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Ms = M ′; so we have ψ(x) = [K] and ψ(y) = [L] in H1(M ′;Z). Furthermore,
we can isotope Σ so that it cuts the handlebody N(S) tranversely along meridional
disks of N(S): in particular, the boundary ∂Σ◦ ⊂ ∂N(S) of Σ◦ := Σ∩

(
M \int N(S)

)
is null-homologous in N(S). Recall that M ′ is obtained from M \ int N(S) by re-
gluing N(S) using a diffeomorphism s̃ : ∂N(S) → ∂N(S) that acts trivially in
homology: hence ∂Σ◦ is still null-homologous in the re-glued handlebody of M ′, so
that Σ◦ ⊂ M \ int N(S) can be completed inside the re-glued handlebody to get a
surface Σ′ ⊂M ′ satisfying ∂Σ′ = nK. We conclude that

λM ′(ψ(x), ψ(y)) =
( 1

n
Σ′ • L mod 1

)
=
( 1

n
Σ • L mod 1

)
= λM (x, y).

Assume now that there is an isomorphism ψ in homology satisfying (3.3). Ac-
cording to Theorem 1.10, M has a surgery presentation in S3: i.e., there is an
n-component framed link L ⊂ S3 such that M = S3

L. We now recall the way of
computing λM from the linking matrix of L, which is the n× n matrix

Lk(L) :=
(

Lk(Li, Lj)
)
i,j
.

(Here we have choosen an orientation for each component Li of L, and the link-
ing number Lk(Li, Lj) is an integer because H1(S3;Z) is trivial; by convention,
Lk(Li, Li) := Lk(Li, ρ(Li)) is the linking number of Li and its parallel ρ(Li).)

Let H := Zn, let f : H×H → Z be the symmetric bilinear map whose matrix in

the canonical basis (ei)i is Lk(L), and let f̂ : H → Hom(H,Z) be the adjoint of f .
We consider the symmetric bilinear form

λf : Gf ×Gf −→ Q/Z

defined on the finite abelian group Gf := Tors
(

Coker f̂
)

by

∀{u}, {v} ∈ Gf ⊂
Hom(H,Z)

f̂(H)
, λf ({u}, {v}) :=

(
fQ (û, v̂) mod 1

)
where fQ is the extension of f to rational coefficients and where û, v̂ are antecedents

of uQ, vQ : H ⊗ Q → Q by the adjoint f̂Q : H ⊗ Q → Hom(H ⊗ Q,Q). It is easily
verified that λf is non-singular.

This algebraic construction from the matrix Lk(L) has the following topological
interpretation in terms of the 4-manifold WL obtained from D4 by attaching 2-
handles along L:

� H ' H2(WL;Z) and −f then corresponds to the intersection form of WL;

� hence Cokerf̂ ' H1(M ;Z) and −λf then corresponds to λM .

We proceed similarly with M ′ to get a symmetric bilinear form f ′ on a finitely-
generated free abelian group H ′. By assumption, we have (Gf , λf ) ' (Gf ′ , λf ′)
and it follows from early works in knot theory [46, 48] and algebra [105, 15] that
the pairs (H, f) and (H ′, f ′) are stably equivalent, meaning that there exist integers
n±, n

′
± ≥ 0 such that

(H, f)⊕ (Z,+1)⊕n+ ⊕ (Z,−1)⊕n− ' (H ′, f ′)⊕ (Z,+1)⊕n
′
+ ⊕ (Z,−1)⊕n

′
− .

The direct sum with (Z,±1) can be realized, at the level of surgery presentations,
by the disjoint union with the (±1)-framed unknot, and this does not change the
3-manifold after surgery. Besides, an automorphism of H can be decomposed into
finitely many “elementary” automorphisms which, in terms of the basis (ei)i of H,
are given by the operations ei ↔ ej , ei 7→ −ei or (ei, ej) 7→ (ei + ej , ej); these
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“elementary” automorphisms can be realized, at the level of surgery presentations,
by the renumbering i↔ j of the components of L, the change of orientation Li 7→
−Li or the operation (Li, Lj) 7→ (Li]Lj , Lj), respectively. All these elementary
operations on links (which constitute the so-called “Kirby calculus” [45]) do not
affect the 3-manifold after surgery : it is obvious for the first two operations and,
for the third operation, it is justified by sliding the attaching locus of a 2-handle of
WL along another 2-handle.

Therefore, we can assume without restriction of generality that M and M ′ are
presented by surgery in S3 along framed links with the same linking matrix:

Lk(L) = Lk(L′).

Then a result of Murakami & Nakanishi [80] asserts that L and L′ are related one
to the other, by isotopies and finitely many local moves of the following type:

(3.4) ←→

Such a local move (called a ∆-move in [80]) can be realized by surgery along a Y -
graph: see [30, Fig. 34 (b)], for instance. We conclude that, up to diffeomorphisms,
M and M ′ are related one to the other by finitely many Y -surgeries. Hence they
are Torelli–equivalent. �

Remark 3.5. The proof of Theorem 3.4 given in [68] is not detailed, and the
knot-theoretical ingredient in terms of linking matrices [80] is actually posterior
to [68]. By refining this proof, [60] and [14] extend Theorem 3.4 to the setting of
3-manifolds with spin and complex spin structures, respectively: these extensions
involve quadratic forms which refine the linking pairing and depend on the (com-
plex) spin structures. See also [79] for a detailed proof of Matveev’s theorem and
additional contents. �

As an immediate consequence of Theorem 3.4, we obtain the following result
about S which dates back to [5] and is proved there with Heegaard splittings. The
formulation in terms of blinks (see Remark 2.9) appears in [35].

Corollary 3.6 (Birman 1974). Any homology 3-sphere is Torelli–equivalent to S3.

By refining the proof of Theorem 3.4, we can also prove the following refinement
of Corollary 3.6 which generalizes [80].

Corollary 3.7. Let M,M ′ ∈ S and let L ⊂ M,L′ ⊂ M ′ be framed oriented
n-component links. The pairs (M,L) and (M ′, L′) are Torelli–equivalent if, and
only if, we have Lk(L) = Lk(L′).

Let Σ be a compact surface with ∂Σ ∼= S1. We now turn to homology cylinders
over Σ (whose definition has been given in §3.1). The following, which appears in
[30], states that IC(Σ) constitutes a Torelli–equivalence class.

Proposition 3.8 (Habiro 2000). Any homology cylinder over Σ is Torelli–equivalent
to the trivial cylinder U = Σ× [−1, 1].
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Sketch of the proof. Fix a system of meridians and parallels in the surface Σ, i.e. a
system of simple oriented closed curves (α1, . . . , αg, β1, . . . , βg) having the following
intersection pattern:

α1

αg

β1 βg

	

Let (C, c) ∈ IC(Σ): recall that C is viewed as a cobordism from the “top” sur-
face ∂+C := c+(Σ) to the “bottom” surface ∂−C := c−(Σ). By gluing one 2-
handle along each curve c−(αi) on ∂−C and one 2-handle along each curve c+(βj)
on ∂+C, the homology cylinder C is turned into a homology 3-ball C ′. Next,

by adding a 3-handle to C ′, we get a homology 3-sphere ıC ′. Each 2-handle
D2 × D1 has a co-core, which is the image of {0} × D1 after attachment of the
2-handle: hence the above procedure has also produced a framed oriented (2g)-
component tangle (γ+

1 , . . . , γ
+
g , γ

−
1 , . . . , γ

−
g ) in C ′, which is called a bottom-top tan-

gle. Now, we can connect the two extremities of each component γ+
j (resp. γ−i )

by a small arc on the “top” (resp. “bottom”) boundary of C ′ to get an ori-

ented framed knot G+
j (resp. G−i ) in ıC ′. It can be deduced from the equality

c+,∗ = c−,∗ : H1(Σ;Z) → H1(C;Z) that the linking matrix of the framed oriented
link G := (G+

1 , . . . , G
+
g , G

−
1 , . . . , G

−
g ) is

Lk(G) =

Å
0g Ig
Ig 0g

ã
so that, in particular, it does not depend on C ∈ IC(Σ).

If we apply the above constructions to the trivial cylinder U instead of C, we

obtain U ′ ∼= D3 and, inside ıU ′ ∼= S3, we obtain a link T with Lk(T ) = Lk(G). It

follows then from Corollary 3.7 that the pair (ıC ′, G) is Torelli–equivalent to (ıU ′, T )
and, therefore, C is Torelli–equivalent to U . We refer to [9, Cor. 7.7] for a more
general result and more detailed arguments. �

Remark 3.9. Recall that Hk is the standard handlebody of genus k, with bound-
ary Σk. A manifold C ∈ V(Σk) is a homology handlebody of genus k if it has the
same homology type as Hk. Using the same method of proof as for Proposition 3.8,
we can show the following characterization due to Habegger [29]: two homology
handlebodies C ′, C ′′ of genus k are Torelli–equivalent if, and only if, they have the
same Lagrangians:

ker
(
c′∗ : H1(Σk;Z) −→ H1(C ′;Z)

)
= ker

(
c′′∗ : H1(Σk;Z) −→ H1(C ′′;Z)

)
See also Auclair & Lescop [1, Lemma 4.11]. �

3.3. Characterization of Jk and Yk at low k for closed manifolds. The J1-
equivalence on V(∅) being perfectly understood thanks to Theorem 3.4, we now
turn to the J2-equivalence. Recall from Proposition 2.16 that the J2-equivalence
coincides with the 2-surgery equivalence. The latter has been characterized in [11].



SURGERY EQUIVALENCE RELATIONS FOR 3-MANIFOLDS 31

In addition to the linking pairing λM of a closed 3-manifold M , the characteri-
zation of the 2-surgery equivalence involves the cohomology ring of M . It follows
from Poincaré duality that all the (co)homology groups of M are determined by
H1(M ;Z). Furthermore, the cohomology ring H∗(M ;Zr) is determined for any
r ∈ N by the triple-cup product form

u
(r)
M : H1(M ;Zr)×H1(M ;Zr)×H1(M ;Zr) −→ Zr,

which is the trilinear and skew-symmetric form defined by

∀x, y, z ∈ H1(M ;Zr), u
(r)
M (x, y, z) :=

〈
x ∪ y ∪ z, [M ]

〉
∈ Zr.

It turns out that all these forms can be encoded by a single invariant: the abelian
(oriented) homotopy type of M , which is defined as the homology class

(3.5) µ1(M) := f∗([M ]) ∈ H3

(
H1(M)

)
.

Here, homology groups are taken with Z-coefficients, f : M → K(H1(M), 1) is
a continuous map in an Eilenberg–MacLane space that induces the canonical ho-
momorphism π1(M) → H1(M) at the level of π1, and the homology of the space
K(H1(M), 1) is identified to the homology of the (abelian) group H1(M).

Theorem 3.10 (Cochran–Gerges–Orr 2001). Let M,M ′ ∈ V(∅). The following
three statements are equivalent:

(1) M and M ′ are J2-equivalent;
(2) there is an isomorphism ψ : H1(M ;Z) → H1(M ′;Z) such that λM corre-

sponds to λM ′ through ψ, and u
(r)
M ′ corresponds to u

(r)
M through Hom(ψ,Zr)

for all r ∈ N;
(3) there is an isomorphism ψ : H1(M ;Z) → H1(M ′;Z) such that the induced

map ψ∗ : H3

(
H1(M ;Z)

)
→ H3

(
H1(M ′;Z)

)
maps µ1(M) to µ1(M ′).

About the proof. In fact, the results of [11] give a fourth, equivalent condition:

(4) there is a cobordism W from M to M ′ such that the maps
incl∗ : H1(M ;Z) → H1(W ;Z) and incl∗ : H1(M ′;Z) → H1(W ;Z)
induced by the inclusions are isomorphisms.

Some of the implications are not too difficult to prove, like

� (1)⇒ (4) and (4)⇒ (1) working with the formulation of the J2-equivalence
in terms of 2-surgeries;

� (4) ⇒ (3) using the canonical map Ω3

(
K(H1(M), 1)

)
→ H3

(
H1(M)

)
de-

fined on the third cobordism group relative to K(H1(M), 1);

� (3) ⇒ (2) using that the forms λM and u
(r)
M are defined by (co)homology

operations, which also exist in the category of groups.

Some other implications like (2) ⇒ (3) and (3) ⇒ (4) are much more involved.
We recommend the reading of [11] where techniques of low-dimensional topology,
differential topology and algebraic topology intertwine in a rich manner. �

As an immediate consequence of Theorem 3.10, we obtain the following result
about S. It appeared priorly in [68], in its formulation with boundary links (see
Remark 2.17).

Corollary 3.11 (Matveev 1987). Any homology 3-sphere is J2-equivalent to S3.
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Although the first publication of Corollary 3.11 seems to be [68], it appears that
the result was known from Johnson as early as 1977 [37]. It has been reproved (in
its formulation with 2-surgeries) by Casson in order to give a surgery description
of his invariant [8].

Morita [73] gave yet another proof of Corollary 3.11 using Heegaard splittings.
By extending Morita’s techniques and after long computations, Pitsch obtained the
following in [87]:

Theorem 3.12 (Pitsch 2008). Any homology 3-sphere is J3-equivalent to S3.

In a very recent paper [18], Faes proved the next step for S. But, in contrast
with Pitsch’s proof of Theorem 3.12, his arguments require the classification of the
Yk-equivalence on S for k ∈ {2, 3, 4}, which was obtained by Habiro [30].

Theorem 3.13 (Faes 2022). Any homology 3-sphere is J4-equivalent to S3.

Hence we now return to the family of Yk-equivalence relations and, for this
purpose, we review a few 3-manifold invariants whose nature is very different from
the linking pairing or the cohomology ring. Recall that the set of spin structures
on an n-manifold V (with n ≥ 2) is defined in terms of its bundle FV of oriented

frames GL+(R;n) ↪→ E(FV )
p−→ V by

Spin(V ) :=
{
σ ∈ H1(E(FV );Z2) : σ|fiber 6= 0 ∈ H1(GL+(R;n);Z2)

}
.

When it is non-empty (i.e. when the second Stiefel–Whitney class w2(V ) ∈ H2(V ;Z2)
vanishes), the set Spin(V ) is an affine space over H1(M ;Z2), the action being given
by x · σ = σ + p∗(x) for any x ∈ H1(M ;Z2) and σ ∈ Spin(M).

Any closed 3-manifold M has a trivial tangent bundle and, so, it admits spin
structures. Given σ ∈ Spin(M), the Rochlin invariant of (M,σ) is defined by

RM (σ) := sgn(W ) mod 16

where W is a compact 4-manifold bounded by M to which σ extends, and sgn(W )
denotes the signature of its intersection form on H2(W ;Z). That RM (σ) is well-

defined follows from the vanishing of ΩSpin
3 (a refinement of Theorem 1.10), the fact

(due to Rochlin) that the signature of a spinable closed 4-manifold is divisible by 16,
and the fact (due to Novikov) that the signature is additive under full-boundary
gluing. (See [45] for these classical results on 4-dimensional topology.) Hence there
is a map RM : Spin(M)→ Z16 attached to any closed 3-manifold M .

Besides, according to [51, 72], we can associate to any σ ∈ Spin(M) a quadratic
form over the linking pairing λM , which means a map qM,σ : TorsH1(M ;Z)→ Q/Z
satisfying

∀x, y ∈ TorsH1(M ;Z), qM,σ(x+ y) = qM,σ(x) + qM,σ(y) + λM (x, y).

Hence there is also a map qM : Spin(M) → Quad(λM ) whose target is the set of
quadratic forms over λM . (This is the refinement of the linking pairing that has
been evoked in Remark 3.5.)

We can now state the characterization of Y2 on V(∅) given in [61].

Theorem 3.14 (Massuyeau 2003). Two manifolds M,M ′ ∈ V(∅) are Y2-equivalent
if, and only if, there is an isomorphism ψ : H1(M ;Z)→ H1(M ′;Z) and a bijection
Ψ : Spin(M ′)→ Spin(M) satisfying the following:

(1) λM corresponds to λM ′ through ψ, and u
(r)
M ′ corresponds to u

(r)
M through

Hom(ψ,Zr) for any r ∈ N;
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(2) RM ′ corresponds to RM through Ψ;
(3) ψ and Ψ are compatible in the sense that Ψ is affine over Hom(ψ,Z2) and

we have the commutative diagram:

Spin(M)
qM // Quad (λM )

Spin(M ′)

Ψ '

OO

qM′
// Quad (λM ′) .

ψ∗'

OO

About the proof. Assume a Torelli twist M  Ms along a surface S ⊂M such that
Ms
∼= M ′. This surgery induces an isomorphism ψs in homology as we have seen

at (2.3). Furthermore, as shown in [60], the surgery M  Ms induces a canonical
bijection Ψs : Spin(Ms)→ Spin(M), which is affine over

Hom(Ψs,Z2) : Hom(H1(Ms),Z2) ' H1(Ms;Z2)→ H1(M ;Z2) ' Hom(H1(M),Z2)

Specifically, it is the unique map that fits into the following commutative diagram:

Spin(M)
++

incl∗

++

Spin
(
M \ int N(S)

)
Spin(Ms)

33 incl∗

33
Ψs '

OO

We have seen in the proof of Theorem 3.4 that the linking pairing is preserved by
the Torelli twist M  Ms, but this is not true anymore neither for the cohomology
ring or for the Rochlin function. Nonetheless, we can explicitly compute how those
two invariants change after a single Y -surgery, and thus observe that there is no
variation if the Y -graph has a 0-framed null-homologous leaf: hence, using the
operation (O1) at page 21, we see that there is no variation by surgery along
a connected graph clasper of degree 2. Using Proposition 2.20, we deduce that
the isomorphism class of the triplet (linking pairing, cohomology rings, Rochlin
function) is invariant under Y2-equivalence.

To prove the converse, we apply the “general strategy” by clasper calculus, which
has been sketched on page 23 (with k := 1). Thus, although Theorem 3.10 and
Theorem 3.14 show similarities in their statements, their proofs are very different
and logically independent. �

As an immediate consequence of Theorem 3.14, we obtain the following result
for homology 3-spheres which appeared priorly in [30]. Note that an M ∈ S has
a unique spin structure σ0, and it turns out that R(M,σ0) can only be 0 or 8
modulo 16: in this case, the Rochlin invariant of M refers to R(M,σ0)/8 ∈ Z2.

Corollary 3.15 (Habiro 2000). Two homology 3-spheres are Y2-equivalent if, and
only if, they have the same Rochlin invariant.

The paper [30] also contains the characterization of Y3 and Y4. To state this, let
us recall that the Casson invariant

λ(M) ∈ Z
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of an M ∈ S is an integral lift of the Rochlin invariant R(M,σ0)/8 ∈ Z2. In some
sense, λ(M) is defined to count the number of conjugacy classes of irreducible rep-
resentations of π1(M) in the Lie group SU(2) using a Heegaard splitting of M [8].
Casson also provided a surgery formula for λ in terms of the Alexander polynomial
of knots, which makes this invariant very computable: see, for instance, the text-
book [93]. By means of this surgery formula, Morita could prove that λ behaves
like a “quadratic” function on the Torelli group [73, 74], and Lescop generalized
Morita’s result in a broader situation [54] (namely, Walker’s extension of the Casson
invariant to rational homology 3-spheres). This quadraticity of λ is an expression
of its property to be a finite-type invariant of degree 2 (see §3.5 below), and this is
precisely the property of λ that is needed for the following result.

Theorem 3.16 (Habiro 2000). Two homology 3-spheres are Y3-equivalent (resp.,
Y4-equivalent) if, and only if, they have the same Casson invariant.

The characterization of Y3 (and, a fortiori, Y4) in the general case of closed 3-
manifolds does not seem to appear in the literature. Neither is the characterization
of J3 (and, a fortiori, J4).

Remark 3.17. At this point of our discussion, it is important to focus on the
nature of the results that we have presented so far for closed 3-manifolds. Each of
them is concerned with a certain surgery equivalence relation ∼ and states that

∀M,M ′ ∈ V(∅), M ∼M ′ ⇐⇒ I(M) ' I(M ′)

where I : V(∅) → A is a certain “package” of algebraic invariants with values in
an appropriately-defined set where there is a notion of isomorphism '. But such a
characterization of ∼ is not yet a classification result, since it continues with two
other problems:

� Realization: Does one know what is the image of I in A?
� Isomorphism: Is the isomorphism problem solved in A?

So, let us reconsider the above characterizations of surgery equivalence relations
under this new angle:

Torelli–equivalence J2-equivalence Y2-equivalence
Characterization Theorem 3.4 Theorem 3.10 Theorem 3.14

Realization problem solved [104] solved [96, 102] solved [102]
Isomorphism problem solved [104, 44] unknown? unknown?

Wall showed that any non-singular bilinear pairing on a finite abelian group can
be realized as the linking pairing of a closed 3-manifold [104]. He also gave a partial
description (by generators and relations) of the abelian monoid of isomorphism
classes of such pairings (where the operation is the direct sum ⊕). His work has
been completed later on by Kawauchi & Kojima [44].

Sullivan proved in [96] that any trilinear alternate form on a finitely-generated
free abelian group can be realized as the triple-cup product form of a closed 3-
manifold: it is interesting to note that, in the middle of the 70’s and in order to
prove this result, Sullivan was already using a surgery operation equivalent to the
Y -surgery.

There exist several kinds of relations between the linking pairing, the triple-
cup product forms and the Rochlin function. For instance, the triple-cup product

forms u
(r)
M and u

(s)
M with coefficients in Zr and Zs, respectively, are related in an
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obvious way if r divides s. But there are also other, more delicate, relations:
for instance, the third “discrete” differential of the Rochlin function RM is given

by u
(2)
M . In fact, Turaev described in [102] all such possible relations, and he thus

solved the realization problem for the triplet (linking pairing, cohomology rings,
Rochlin function). However, since the isomorphism problem for trilinear skew-
symmetric forms does not seem to be solved (even for coefficients in Q), there is
currently no procedure to decide (in general) whether two closed 3-manifolds are
J2-equivalent. Consequently, the same applies to the Y2-equivalence relation. �

3.4. Characterization of Jk and Yk at low k for homology cylinders. We
now consider the case of homology cylinders over a compact surface Σ (with one
boundary component).

We start with some generalities about the structure added by the sequence of Yk-
equivalence relations on the monoid IC(Σ). For every k ∈ N∗, denote by YkIC(Σ)
the subset of homology cylinders that are Yk-equivalent to the trivial cylinder U .
Hence, we get a decreasing sequence

IC(Σ) = Y1IC(Σ) ⊃ Y2IC(Σ) ⊃ Y3IC(Σ) ⊃ · · ·

of submonoids, which is called the Y -filtration. Goussarov [28] and Habiro [30]
proved that, for any integer k ≥ 0, the quotient monoid

IC(Σ)

Yk+1

is a group and, that, for any integers i, j ≥ 1, the inclusionï
YiIC(Σ)

Yk+1
,
YjIC(Σ)

Yk+1

ò
⊂ Yi+jIC(Σ)

Yk+1

holds true in that group. In particular, YkIC(Σ)/Yk+1 is an abelian group for all
k ≥ 1, and the direct sum of abelian groups

GrY IC(Σ) :=
⊕
k≥1

YkIC(Σ)

Yk+1

has the structure of a graded Lie ring. The following is easily checked.

Proposition 3.18. The “mapping cylinder” construction cyl : I(Σ) → IC(Σ)

induces a morphism of graded Lie rings Gr(cyl) : GrΓ I(Σ)→ GrY IC(Σ).

Thus the “Lie algebra of homology cylinders” GrY IC(Σ) is highly related to the

“Torelli Lie algebra” GrΓ I(Σ), which has been reviewed at (2.8). We refer to the
works [30, 26, 29, 9, 31, 67, 81, 82]; see also the end of §3.5 in this connection.

In this subsection, we only deal with the low-degree parts of GrY IC(Σ). We
start with the characterization of the Y2-equivalence, which needs two invariants
of homology cylinders. The first invariant is the action of IC(Σ) on the second
nilpotent quotient π/Γ3π of π = π1(Σ, ?). Indeed, as observed in [26], the group
homomorphism (2.5) can be extended (for any k ∈ N∗) to a monoid homomorphism:

I(Σ)

cyl

��

ρk // Aut
(
π/Γk+1π

)

IC(Σ)

ρk

88
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The second invariant of homology cylinders that we need is the Birman–Craggs
homomorphism, which originates from constructions of Birman & Craggs [7] on the
Torelli group and was studied by Johnson [39]. In our setting, the most efficient
way to define it is as follows:

β : IC(Σ) −→ Map(Spin(Σ),Z2), M 7−→ 1

8
RıM

Here, we associate to any M ∈ IC(Σ) the closed 3-manifold

(3.6) ıM := M ∪m (−Σ× [−1, 1]),

we identify Spin(Σ) to Spin(ıM) via the map m± : Σ → M ↪→ ıM , and we use

the fact that the Rochlin function RıM takes values in {0, 8} (because H1(ıM ;Z) is
torsion-free). The following is a generalization of Corollary 3.15 in genus g > 0.

Theorem 3.19 (Habiro 2000, Massuyeau–Meilhan 2002). Two homology cylinders
M,M ′ are Y2-equivalent if, and only if, β(M) = β(M ′) and ρ2(M) = ρ2(M ′).

About the proof. This characterization is announced in [30] and proved in [66]. It
preceded Theorem 3.14 and uses the same techniques for its proof. Note that the
situation of homology cylinders is simpler than the situation of closed manifolds for
two reasons: the first homology groups of homology cylinders are torsion-free (hence
there is no linking pairing to deal with), and they come with a natural parametriza-
tion by an abelian group independent of the manifold (namely H1(Σ;Z)). �

Remark 3.20. Actually, the results in [66] give an explicit computation of the
abelian group IC(Σ)/Y2 and, thanks to Johnson’s computation of the abelianized
Torelli group [43], this implies that the degree 1 part

Gr1(cyl) : I(Σ)/[I(Σ), I(Σ)]→ IC(Σ)/Y2

of the “mapping cylinder” construction is an isomorphism. �

To state now the characterization of the Y3-equivalence, we need still more in-
variants. On the one hand, we fix an embedding j : Σ → S3 such that j(Σ) is a
Heegaard surface of S3 (deprived of a small open disk), and we identify N(j(Σ))
with Σ× [−1, 1] via j. Then the Casson invariant induces a map

λj : IC(Σ) −→ Z, M 7−→ λ
(
(S3 \ int(Σ× [−1, 1])) ∪mM

)
,

which constitutes an invariant of homology cylinders. It depends on the choice
of j, of course, but this dependency can be managed as Morita did in the case
of the Torelli group [74]. On the other hand, we can consider the homology
H1(M,∂−M ;Z[H]) of M relative to its “bottom” boundary” ∂−M = m−(Σ), with
coefficients twisted by m−1

±,∗ : H1(M ;Z) → H := H1(Σ;Z); the order of this Z[H]-
module

∆(M,∂−M) := ord H1(M,∂−M ;Z[H]) ∈ Z[H]

is a relative version of the Alexander polynomial. With this definition, ∆(M,∂−M)
is only defined up to multiplication by a unit of the ring Z[H], i.e. an element
of ±H; however, by using Turaev’s refinement of the Reidemeister torsion, this
indeterminacy can be fixed. Next, it is possible to “expand” ∆(M,∂−M) as an
element of (the degree completion of) the symmetric algebra S(H), and to keep
only the degree 2 part of that expansion:

α(M) ∈ S2(H).
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The following is a generalization of Theorem 3.16 in genus g > 0.

Theorem 3.21 (Massuyeau–Meilhan 2013). Two homology cylinders M,M ′ are
Y3-equivalent if, and only if, we have λj(M) = λj(M

′), ρ3(M) = ρ3(M ′) and
α(M) = α(M ′).

About the proof. This theorem is proved in [67]. An important step in the proof con-
sists in identifying the abelian group Y2IC(Σ)/Y3 and, for this, the “general strat-
egy” by clasper calculus (see page 23) is applied (with k := 2). But, the difficulty is
to assemble all three invariants that are expected to characterize the Y3-equivalence
(namely λj , ρ3, α) into a single homomorphism Z2 defined on Y2IC(Σ)/Y3. This
role of “unifying invariant” is played by the degree 2 part of the LMO homomor-
phism Z [9, 31], whose behaviour under Y2-surgery is well-understood. (See also
the end of §3.5 in this connection.) �

It is also explained in [67] how to deduce from Theorem 3.19 and Theorem 3.21
characterizations of the J2-equivalence and J3-equivalence, respectively. Specifi-
cally, J2 is classified by ρ2 and J3 is classified by the couple (ρ3, α). In genus g = 0,
Theorem 3.12 is thus recovered with a completely different proof than [87]. Besides,
the same strategy of proof (i.e., use Yk to understand Jk) is used in [18] for proving
Theorem 3.13.

Remark 3.22. Nozaki, Sato and Suzuki [81] have determined the abelian group
Y3IC(Σ)/Y4. Their description too involves a “clasper surgery” map ψk of the
type described on page 23 (with k := 3), and their arguments involve some (re-
ductions of) higher-degree parts of the LMO homomorphism Z. It still remains to
deduce from their result a characterization of the Y4-equivalence relation on the full
monoid IC(Σ). �

Remark 3.23. In contrast with the case of closed 3-manifolds, the above charac-
terizations of Yk-equivalence and Jk-equivalence relations for homology cylinders
do not lead to “isomorphism problems” of the type mentioned in Remark 3.17. �

3.5. Characterization in higher degrees. To conclude, we now survey what
is known about the characterization in arbitrary high degrees of the three main
families of relations that have been considered in these notes: namely the k-surgery
equivalence, the Jk-equivalence and the Yk-equivalence.

First of all, we consider the family of k-surgery equivalence relations on V(∅).
We start with an easy observation.

Proposition 3.24. Any homology 3-sphere M is k-surgery equivalent to S3, for
every k ≥ 1.

Proof. By Corollary 3.11, there is a sequence

S3 = M0  M1  · · · Mr = M

where each move Mi  Mi+1 is a (±1)-framed surgery along a knot Ki in a
homology 3-sphere Mi. Since π1(Mi) has trivial abelianization, we have π1(Mi) =
Γkπ1(Mi) for all k ≥ 1: hence the move Mi  Mi+1 can be viewed as a k-surgery
for every k ≥ 1. �

Nevertheless, as was shown in [11], the family of k-surgery relations is very inter-
esting for 3-manifolds that are homologically non-trivial. Following Turaev [103],
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we define the k-th nilpotent (oriented) homotopy type of a closed 3-manifold M as

µk(M) := f∗([M ]) ∈ H3

Å
π1(M)

Γk+1π1(M)
;Z
ã

where f : M → K
(
π1(M)/Γk+1π1(M), 1

)
is a continuous map in an Eilenberg–

MacLane space inducing the canonical homomorphism π1(M)→ π1(M)/Γk+1π1(M)
at the level of π1. (Of course, for k := 1, we recover what we called in (3.5) the
“abelian homotopy type” of M .)

One can view µk(M) as an approximation of the (oriented) homotopy type of M
since, according to [101, 97], the latter is encoded by π1(M) and the image of the
fundamental class [M ] in H3

(
π1(M);Z

)
. Then we have the following generalization

of the equivalence (1)⇔(3) in Theorem 3.10.

Theorem 3.25 (Cochran–Gerges–Orr 2001). Let k ∈ N∗. Two closed 3-manifolds
M and M ′ are (k + 1)-surgery equivalent if, and only if, there is an isomorphism
ψ : π1(M)/Γk+1π1(M) −→ π1(M ′)/Γk+1π1(M ′) mapping µk(M) to µk(M ′).

Although the realization problem for nilpotent homotopy types of 3-manifolds has
been (formally) solved in [103], it seems to be really difficult to classify the k-surgery
equivalence relations, especially because the third homology groups of finitely-
generated nilpotent groups do not seem to be well understood. Yet, Cochran,
Gerges & Orr have been able to apply Theorem 3.25 in one particular case: using a
good knowledge [36] of the third homology group of finitely-generated free-nilpotent
groups, they prove that a closed 3-manifold M is k-surgery equivalent to ]m(S1×S2)
if, and only if, we have H1(M ;Z) ' Zm and all Massey products of M of length
≤ 2k − 1 vanish. (For k := 2, this is an instance of the equivalence “(1)⇔(2)” in
Theorem 3.10.)

Here is another consequence of Theorem 3.25, which does not seem to have been
observed before.

Corollary 3.26. Let M,M ′ ∈ V(∅) and let k ≥ 2 be an integer. If M and M ′ are
J2k−2-equivalent, then they are k-equivalent.

Proof. Let j ∈ N∗ and assume a Torelli twist M  Ms along a surface S ⊂M with
an s ∈ JjI(S). The Seifert–Van Kampen theorem shows the existence of a unique
isomorphism

ψs : π1(M)/Γj+1π1(M)
'−→ π1(Ms)/Γj+1π1(Ms)

that fits into the commutative diagram:

π1(M\int N(S))
Γj+1π1(M\int N(S))

wwww '' ''
π1(M)

Γj+1π1(M) '
ψs // π1(Ms)

Γj+1π1(Ms)
.

In order to compare µj(M) and µj(Ms) via ψs, we consider the mapping torus of s
which, with the notation (3.6), can be defined as

tor(s) := c̆yl(s)



SURGERY EQUIVALENCE RELATIONS FOR 3-MANIFOLDS 39

where cyl(s) ∈ IC(S) denotes the mapping cylinder of s. This is a closed 3-manifold
whose j-th nilpotent fundamental group can be identified to that of S by the iso-
morphism

ϕs : π1(S)/Γj+1π1(S)
'−→ π1(tor(s))/Γj+1π1(tor(s))

that is induced by the inclusion S = S×1 ↪→ tor(s). Besides, the inclusion S ↪→M
induces a homomorphism

ι : π1(S)/Γj+1π1(S) −→ π1(M)/Γj+1π1(M).

Then, a simple homological computation in a singular 3-manifold that contains the
three of M , Ms and tor(s) shows that

(3.7) ψ−1
s,∗
(
µj(Ms)

)
= µj(M) + ι∗ϕ

−1
s,∗
(
µj
(

tor(s)
))
.

This variation formula for the j-th nilpotent homotopy type is established in the
introduction of [65], generalizing [26, Theorem 2] and [33, Theorem 5.2].

The same formula shows that, given a compact surface Σ with ∂Σ ∼= S1, the
following map is a group homomorphism:

Mj : JjI(Σ) −→ H3

Å
π1(Σ)

Γj+1π1(Σ)
;Z
ã
, f 7−→ µj

(
tor(f)

)
.

This is essentially the j-th Morita homomorphism, introduced in [75] as a refinement
of the “j-th Johnson homomorphism”. As shown by Heap in [33], the kernel of Mj

is J2jI(Σ). Therefore, if M ′ is the result of a Torelli twist M  Ms with an
s ∈ J2(k−1)I(S), we have µk−1

(
tor(s)

)
= 0. So, we conclude thanks to (3.7) that

M and M ′ are k-surgery equivalent. �

Remark 3.27. It would be interesting to have a direct proof of Corollary 3.26,
which would apply to V(R) for any compact surface R. Indeed, surgery along a
connected graph clasper of degree 2k − 2 can always be realized as a sequence
of three k-surgeries (see [66, Fig. 3] for k = 2): therefore, by Proposition 2.20,
the Y2k−2-equivalence is stronger than the k-surgery equivalence [30]. Given that
“Y2k−2 ⇒ J2k−2”, it is likely that Corollary 3.26 is true in V(R) for any R. �

The following question now arises for the family of Jk-equivalence relations: can
we expect a result analogous to Theorem 3.25? This seems to be currently out of
reach, as revealed already by the case of homology 3-spheres. Indeed, the methods
for proving the triviality of the J3-equivalence (resp., J4-equivalence) in [87] (resp.,
in [18]) seem to be hard to adapt to arbitrary high degrees.

Remark 3.28. So, in view of Proposition 3.24, we can hardly imagine a kind of
converse to Corollary 3.26. �

In contrast with the Jk-equivalence, we know (at least, theoretically) how to
characterize the Yk-equivalence relation in any degree k ≥ 1 by means of a certain
family of topological invariants of 3-manifolds. In the sequel, we fix a compact
surface R and a Y1-equivalence class V0 in V(R).

Definition 3.29. Let A be an abelian group. A map F : V0 → A is a finite-type
invariant of degree at most d if, for any M ∈ V0, for any pairwise-disjoint compact
surfaces S0, S1, . . . , Sd ⊂ int(M) with ∂Si ∼= S1, and for all s0 ∈ I(S0), s1 ∈
I(S1), . . . , sd ∈ I(Sd), we have∑

J⊂{0,1,...,d}

(−1)|J| · F (MJ) = 0 ∈ A
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where MJ ∈ V0 is obtained from M by twist along tj∈JSj with tj∈Jsj . �

Remark 3.30. The notion of “finite-type invariants” for homology 3-spheres has
been introduced by Ohtsuki in [84], as an analogue of the notion of “Vassiliev
invariants” for knots and links in S3. This notion has been extended and stud-
ied by Cochran & Melvin [12], who considered arbitrary 3-manifolds. In this
Ohtsuki–Cochran–Melvin theory, the basic operation is the 2-surgery instead of
the Torelli twist.

The rich interplay between the theory of finite-type invariants and the study of
mapping class groups was firstly considered by Garoufalidis & Levine [20, 23, 24, 25].
Next, came the “clasper calculus” of Goussarov and Habiro [28, 30], which offered
very efficient tools to study and enumerate finite-type invariants. Their works also
revealed that the Torelli twist (or any equivalent type of modification, like the Y -
surgery or the borromean surgery) is the appropriate operation to define finite-type
invariants as we did in Definition 3.29.

We refer to [22, 30] for a comparison of the various notions of finite-type invari-
ants: they happen to be all equivalent one to the other for homology 3-spheres (up
to some degree rescalings), but they are not equivalent for arbitrary 3-manifolds. �

In order to explain the relationship between finite-type invariants and the Yk-
equivalence relations, we need a little bit of algebraic context. Let G be an arbitrary
group, and denote its group ring by Z[G], which is the abelian group freely generated
by the set G and has the multiplication inherited from the group operation of G.
The augmentation ideal of G is

I := IG = ker
(
ε : Z[G] −→ Z

)
where the augmentation ε is the ring homomorphism mapping any g ∈ G to 1 ∈ Z.
The I-adic filtration of Z[G] is the sequence Z[G] = I0 ⊃ I = I1 ⊃ I2 ⊃ · · · defined
by the powers of I. The following classical fact relates this to the lower central
series (2.4) of G.

Lemma 3.31. Let k ∈ N∗. For any g ∈ ΓkG, we have (g − 1) ∈ Ik.

Proof. The statement is obviously true for k = 1. Next, for any k ∈ N∗, an element
of Γk+1G is (by definition) a product of commutators of the form [x, y] or [y, x]
where x ∈ G and y ∈ ΓkG. Besides, we have the following identities in Z[G], for
any g, h ∈ G:

gh− 1 =
(
(g − 1)− (h−1 − 1)

)
· h

[g, h]− 1 = ((g − 1)(h− 1)− (h− 1)(g − 1)) g−1h−1.

Hence the statement is justified by an induction on k ≥ 1. �

We can now prove the following.

Proposition 3.32. Let M,M ′ ∈ V0 and let d ∈ N. If M and M ′ are Yd+1-
equivalent, then F (M) = F (M ′) for any finite-type invariant F : V0 → A of degree
at most d.

Proof. Assume that M  Ms
∼= M ′ by a Torelli twist along S ⊂ int(M) with

s ∈ Γd+1I(S). Consider the map f : I(S) → A defined by f(u) := F (Mu) and
extend it by additivity to

f : Z
[
I(S)

]
−→ A.
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The fact that F is of finite type of degree at most d implies that f vanishes on all
elements of the form (s0 − 1)(s1 − 1) · · · (sd − 1) with s0, s1, . . . , sd ∈ I(S). Since
those elements generate Id+1 addivitely, we have f(Id+1) = 0. We conclude using
the fact that (s− 1) ∈ Id+1 by Lemma 3.31. �

If Proposition 3.32 had a converse, then we would get (at least, theoretically) a
characterization of the Yk-equivalence relation. Indeed, the converse is true for the
class V0 := S.

Theorem 3.33 (Habiro 2000). Any two homology 3-spheres are Yd+1-equivalent if,
and only if, they are not distinguished by finite-type invariants of degrees at most d.

Thus, Corollary 3.15 and Theorem 3.16 are proved by identifying all (the few)
finite-type invariants of homology 3-spheres of degrees 1, 2 and 3.

About the proof of Theorem 3.33. The theorem is announced in [30] and it is proved
there in the analogous case of knots in S3. See [62] for a proof, which involves clasper
calculus. �

Let Σ be a compact surface with one boundary component, and consider now
the class V0 := IC(Σ) of homology cylinders over Σ. Except in the case Σ = D2, it
is not known whether the converse to Proposition 3.32 holds true for IC(Σ).

Goussarov–Habiro Conjecture (GHC). Let d ∈ N∗. Any two homology cylin-
ders over Σ are Yd+1-equivalent if, and only if, they are not distinguished by finite-
type invariants of degree at most d.

Currently, the GHC is only known to be true up to degree d = 4, the most
recent result in this direction being obtained in [82]. By comparing Lemma 3.31 to
Proposition 3.32, we see that the GHC is an analogue of the following problem in
group theory, which can be stated for any group G.

Dimension Subgroup Problem (DSP). Let k ∈ N∗. Determine the gap between
ΓkG and (1 + Ik) ∩G in Z[G].

It had been conjectured during a long time that the inclusion ΓkG ⊂ (1 + Ik) ∩G
should be an equality, until Rips found the first counter-example for k = 4 and a
finite 2-group G [89].

In fact, the DSP can be generalized replacing the lower central series of G by
any series G = N1G ⊃ N2G ⊃ N3G ⊃ · · · of subgroups which is strongly central
(i.e. [NiG,NjG] ⊂ Ni+jG for all i, j ∈ N∗), and by replacing the I-adic filtration
by an appropriate filtration of Z[G]. Furthermore, some versions of the DSP can be
formulated in the group algebra F[G] for any commutative field F, rather than in the
group ring Z[G], and these versions of the problem have an explicit solution whose
nature depends on the characteristic of F. (See, for instance, the monograph [86].)

It is observed in [63] that some results of Goussarov [28] and Habiro [30] about
the Y -filtration on IC(Σ) can be interpreted as follows: the GHC in degree d is an
instance of the DSP for the group G := IC(Σ)/Yd+1. Thus, analogues of the GHC
for finite-type invariants with values in commutative fields are obtained in [63], and
the following weak version of the GHC is then derived:

Theorem 3.34 (Massuyeau 2007). Let d ∈ N∗. There exists an integer D, depend-
ing on d and the topological type of Σ, with the following property: if two homology
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cylinders are not distinguished by finite-type invariants of degree at most D, then
they are Yd+1-equivalent.

We mention the following corollary: two homology cylinders are not distinguished
by finite-type invariants if, and only if, they are Yk-equivalent for any integer k ≥ 1.
Actually, it is conjectured that finite-type invariants classify homology cylinders
(and, in particular, homology 3-spheres).

We conclude with two questions which naturally arise from our discussion on
Theorem 3.33 and its expected generalization, namely the GHC.

� Does one know well enough all finite-type invariants of a given degree d?
For homology 3-spheres, one can construct infinite series of finite-type in-
variants following Ohtsuki’s original idea [83], by appropriate expansions of
quantum invariants. Furthermore, there is a very powerful invariant of ho-
mology 3-spheres: the LMO invariant [53], which is known to be universal
among Q-valued finite-type invariants [52] and to dominate large families
of quantum invariants [47]. For homology cylinders too, there is a uni-
versal Q-valued finite-type invariant: the LMO homomorphism defined on
the monoid IC(Σ), which allows for an explicit diagrammatic description

of the Lie algebra GrY IC(Σ) with rational coefficients [9, 31]. (See [32]
for a survey.) But computing those universal invariants is a challenge in
high degrees (despite their combinatorial construction) and, moreover, it
is not known whether they dominate all finite-type invariants (including
those with values in torsion abelian groups). Nevertheless, recent works of
Nozaki, Sato & Suzuki provide encouraging perspectives [81, 82].

� Can we hope an analogue of Theorem 3.33 for arbitrary closed 3-manifolds?
The answer is trivially “yes” in degree 0, but it is certainly “no” in higher
degrees: for instance, ]4(S1×S2) and (S1×S1×S1)](S1×S2) are not Y2-
equivalent (because their cohomology rings are not isomorphic), although
they are not distinguished by finite-type invariants of degree at most one
[63, Ex. 3.4]. Yet, this negative answer is not necessarily disappointing. It
rather suggests that the notion of finite-type invariant (as given in Defini-
tion 3.29) is not appropriate for homologically non-trivial 3-manifolds: the
notion probably needs to be refined, by adding a kind of homological struc-
tures to 3-manifolds, like a (complex) spin structure or a parametrization
of its first homology group.
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101–116.
[3] R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S3. Ann. of Math. (2)

68 (1958), 17–37.

[4] J. Birman, On Siegel’s modular group. Math. Ann. 191 (1971), 59–68.
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1951, no. V, 10 pp. La Bibliothèque Nationale et Universitaire de Strasbourg, 1952.

[99] R. Thom, Sur les variétés cobordantes. Colloque de topologie et géométrie différentielle,
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